
ENDISH 12 COMPUTER COURSE IN WEEKLY PARTS

LEA's 	CRAMMING FOR PUN AND THE FUTURE

Vol. 1 	 No 12

APPLICATIONS 8

A COMPUTER TYPING TUTOR-3 	353 al
Extra programming to include the remainder of

keyboard symbols-plus a searching test

GAMES PROGRAMMING 12

THE OBJECTS OF THE QUEST 	 360

Putting the props into your adventure-to help,
hinder or mislead the adventurer

BASIC PROGRAMMING 27

NEW IDEAS FOR SCREEN ART 	 366

Expand your graphics skills and practise your
existing ones on some new pictures

BASIC PROGRAMMING 28

AVOIDING PITFALLS 	 375 1
amaniciamaisim

Protect your programs against errors due to misuse
with one or more of these helpful routines

MACHINE CODE 13

Save yourself the tedium of hand assembly by getting
the computer to do the job for you

INDEX
The last part of INPUT, Part 52, will contain a complete, cross-referenced index.

For easy access to your growing collection, a cumulative index to the contents
of each issue is contained on the inside back cover.

PICTURE CREDITS
Front cover, Dave King. Pages 353, 354, Kuo Kang Chen. Page 356, Steve Cross.
Page 359, Malcolm Harrison. Pages 360, 362, 365, Neil Winstanley. Page 366, Nigel
Snowden/Ian Stephen. Pages 367, 369, 372, Peter Reilly. Page 369, ZEFA/Ian
Stephen. Pages 370, 371, 372, Marshall Cavendish/Ian Stephen. Pages 375, 376,
377, 378, 379, Paddy Mounter. Page 380, Paul Chave. Pages 382, 384, Digital Arts.

CO Marshall Cavendish Limited 1984/5/6
All worldwide rights reserved.

The contents of this publication including software, codes, listings,
graphics, illustrations and text are the exclusive property and copyright of
Marshall Cavendish Limited and may not be copied, reproduced,
transmitted, hired, lent, distributed, stored or modified in any form
whatsoever without the prior approval of the Copyright holder.

Published by Marshall Cavendish Partworks Ltd, 58 Old Compton Street, London W1V 5PA,
England. Printed by Artisan Presss, Leicester and Howard Hunt Litho, London.

HOW TO ORDER
YOUR BINDERS
UK and Republic of Ireland:
Send £4.95 (inc p & p) (1R£5.95) for
each binder to the address below:

Marshall Cavendish Services Ltd,
Department 980, Newtown Road,
Hove, Sussex BN3 7DN

Australia: See inserts for details, or
write to INPUT, Gordon and Gotch
Ltd, PO Box 213, Alexandria, NSW
2015
New Zealand: See inserts for details, or
write to INPUT, Gordon and Gotch
(NZ) Ltd, PO Box 1595, Wellington
Malta: Binders are available from local
newsagents.

There are four binders each holding 13 issues.

BACK NUMBERS
Back numbers are supplied at the regular cover price (subject to availability).

UK and Republic of Ireland:
INPUT, Dept AN, Marshall Cavendish Services,
Newtown Road, Hove BN3 7DN

Australia, New Zealand and Malta:
Back numbers are available through your local newsagent.

COPIES BY POST
Our Subscription Department can supply copies to any UK address regularly at £1.00 each.
For example the cost of 26 issues is £26.00; for any other quantity simply multiply the number
of issues required by £1.00. Send your order, with payment to:

Subscription Department, Marshall Cavendish Services Ltd,

Newtown Road, Hove, Sussex BN3 7DN

Please state the title of the publication and the part from which you wish to start.

HOW TO PAY: Readers in UK and Republic of Ireland: All cheques or postal orders
for binders, back numbers and copies by post should be made payable to:

Marshall Cavendish Partworks Ltd.

QUERIES: When writing in, please give the make and model of your computer, as
well as the Part No., page and line where the program is rejected or where it does
not work. We can only answer specific queries- and please do not telephone. Send
your queries to INPUT Queries, Marshall Cavendish Partworks Ltd, 58 Old
Compton Street, London W1V SPA.

INPUT IS SPECIALLY DESIGNED FOR:
The SINCLAIR ZX SPECTRUM (16K, 48K,128 and +),
COMMODORE 64 and 128, ACORN ELECTRON, BBC B
and B+,and the DRAGON 32 and 64. .

In addition, many of the programs and explanations are also
suitable forthe SINCLAIR ZX81, COMMODORE VIC 20, and
TANDY COLOUR COMPUTER in 32K with extended BASIC.
Programs and text which are specifically for particular machines
are indicated by the following symbols:

SPECTRUM I6K,
48K,128, and + 	COMMODORE 64 and 128

ACORN ELECTRON,
BBC B and 1+ 11 DRAGON 32 and 64

TANDY nun a 	3:K VIC 20 mr COLOUR COMPUTER

■ ADDING THE NUMBERS
■ USING THE SHIFT KEY FOR

MORE SYMBOLS
■ BUILDING UP A REGULAR RHYTHM
■ IMPROVING SPEED AND ACCURACY

This time you can extend your skills
to the number keys and all the other
symbols on the keyboard. There's
also a speed game program to help
you improve your typing even more

If you have followed the whole of the typing
tutor so far, you will be familiar with all of the
letter keys and punctuation on the bottom
three rows of the keyboard. But as yet, you
won't have touched on the all-important (for
program listings) number keys. Nor have you
yet learnt how to shift the keys to get either
capital or lower case letters—plus the extra
punctuation. and symbols available.

The programs in this section show you how
to add in all of these to your developing typing
skills. And in addition there's an exercise
which will allow you to increase your speed,
accuracy and rhythm—and it's fun too!

ADDING THE NUMBERS
As with the previous two programs (pages 289
to 295 and 328 to 332), adding the number line
on the keyboard can be done with simple
modifications to the original program you used
in the earlier lessons. So LOAD the last program
and type in these extra lines. Some of them
overwrite existing lines, and some are num-
bered to slot in amongst those you already
have:

30 LET S$="1A2S3D4F5G6H7J8K9LO"
210 FOR K=6 TO 24
230 LET R$ = S$(K — 5)
320 LET RN=INT (RND*19) + 1
330 PRINT AT 10,RN +5;"*": LET

13$ = S$(RN)
350 PRINT AT 10,RN + 5;"0"
440 LET RN=INT (RND*19) + 1
530 PRINT AT 10,13;" ❑❑❑❑ ❑

❑❑❑❑❑ ": PRINT AT 10,13;T$
540 FOR M =1 TO LEN T$: PRINT AT 9,

11 +M;"0•011100000
❑❑❑ "

610 FOR N=1 TO 5: RESTORE : LET
RN=INT (RND*24) + 1:FOR K=1 TO RN:
READ X$: NEXT K

1010 PRINT AT 12,6;S$

2000 DATA "MC6809E","VALUE",
"LAST","Z80A","RELAX",
"6502","A37XZ","1024",
"VASTLY","JUNK","RETURN",
"67VDG"

2010 DATA "ONLY","EXCITED",
"74LS83","ROUND","LINER",
"1984","30123","FROWN",
"4M HZ","WX101","64MB",
"VIDEO"

40 A$ ="1A2S3D4F5G6H7J8K9L0:":
POKE 54296,15:GOTO 380

80 PRINT "gAggigggggg";:
IF K<3 THEN PRINT"L
TAB(10)A$: POKE 198,0

90 X= INT(RND(1)*20) + 1:N= N + 1:
P=P+1:1F K=1 THEN X= N:
GOTO 120

100 IFK= 3 THEN X= INT(RND(1)*20)
+1:PRINTTAB(18)"LM9EIgg
11111 11111I1 "M1D$ (A$,X,1)
"LIng11111111:913E1"

110 IF K=4 THEN PRINT TAB(16)

11111111111111111111"M
(VVVV):X = N + 6

120 IF K<3 OR K=4 THEN PRINT
"giggggggg"TAB(1o+(X —1))

220 IF K < 3 OR K=4 THEN PRINT
"I§AggigggyTABoo+
(x —I))<<O"

260 IF K=1 AND N <20 THEN 70
540 DATA R2D2,VIC20,COM64,1A2B,

28.3.67,AGE16,7UP,YOU2,
A37N0,1 SEC

550 DATA 9H53B,16/92,01.P5V,
19T0572,STEP.73,1984,ZX81,
13/3/84,WE4ARE1

560 DATA S7T4N,Q3C457,A13579Z,
P14A41,6K82F3,S0X7,S052ME,
DOOR.,6502CHIP

LI
20 DIM A$(40)
30 FOR T=1 TO 40:READ A$(T):

NEXT
40 A$ ="1A2S3D4F5G6H7J8K9LO; — :":

A2$ = A$

420 PR1NTTAB(9,10)A2$
430 FOR T=1 TO 22
460 PRINTTAB(8 + T,9)"*"TAB

(8 + T,10)B2$
530 PRINTTAB(8 +T,9)"E"TAB

(8 +T,10)B2$
630 PRINTTAB(9,10)A2$
650 P= RND(22):X= P + 8
820 P= RND(22):B2$= M1D$(A$,P,1)
950 P= RND(40)
980 PRINTTAB(17,14) B2$" El ❑

❑❑ "
1150 B2$ = A$(RND(40))
1180 B2$= B2$ + " ❑ " +

A$(RND(40))
1330 DATA 3B3N44,B5N7JM,VB35N45,

3B43BV6NHJ454,FRN312V,1CWNY,
C43N4HJ45B,4343HG3BN4334,
"34:;DWDP","D34C,3RUY,0",
"QAY,9UN,D7B8"

1350 DATA FOUND,QUITE,GREY,
AZURE,QUICKLY,PRIZE,ZONE,
COLOUR,ALTHOUGH,CERTIFY

1360 DATA YACHT,GAZELLE,
DELIVERY,KNOWLEDGE

NC
10 OB$ = "1A2S3D4F5G6H7J

8K9L0;: —
210 AP=1252
220 FOR K =1 TO 22
320 AP =1252 + RND(22)
430 P$= MID$(OB$,RND(22),1)
1020 PRINT@261,0B$
9000 DATA MC6809E,VALUE,"LAST:",

Z80A,R ELAX,6502,A37XZ, — 1024,
VASTLY,J U N K

9010 DATA RETURN,A847VDG,145.22,
"ONLY,",EXCITED,74LS83, —93.41,
ROUND,LINER

9020 DATA PROCESS,FROZEN,BRING,
1984,D RAW N, BLOOD,842.52,"301,
123",350 KG

When you RUN the program, you will be asked
to select one of the familiar five levels. These
are much as before, with the addition of the
extra characters. In the lower levels, you will
be asked to mix and match numbers, and
sometimes punctuation, with the existing
keys—this makes it hard for you, by ensuring
that you can't just concentrate on the numbers.

Then, in the higher levels, you will be asked
to type a mixture of words, groups of numbers,
and compounds that mix letters and numbers

together. You will see the words and numbers
that are selected in the DATA statements near
the end of the program. If you wish, you can
change these after a time, should you get too
familiar with what the computer is going to ask
you to do, and want to give yourself a real
challenge! But remember to keep the number
of words (or groups of characters) the same or
the computer will not be trying to READ the
correct amount of DATA.

When you have the number keys at your
command, it's time to move on to the next
lesson. This will give you practice at getting
the characters for which you need to press the
SHIFT1 key.

GETTING SHIFTED
This time, the extra program lines will add the
ability to use the SHIFT key. As before, they
either overwrite the existing lines or add into
them:

20 POKE 23658,0: LET ER = 0
30 LET S$ = "A!aS@sD # dF$fG%gH

&hJIK(kL)10"
210 FOR K = 2 TO 29
230 LET R$ = S$(K — 1)
320 LET RN=INT (RND*28) +1
330 PRINT AT 10,RN + 1;"*": LET

R$= S$(RN)
350 PRINT AT 10,RN + 1;" ❑ "

440 LET RN=INT (RND . 28) +1
610 FOR N =1 TO 4: RESTORE : LET

RN=INT (RND*24) +1: FOR K=1 TO RN:
READ X$: NEXT K

1010 PRINT AT 12,2;S$
2000 DATA "$235.50","PRINT# ",

"&H1200","23.5%","Account",
"LONDON","They're", "15 @ £12",
"(under)","H + 9 =1 D"," — List — ",
"Firer

2010 DATA "; — ;; —;","Extra",
"Out-of","Shall","4*4 = 16",
"Why?","6:10pm","We'lI","£15.40",
"Drive", "ATTENTION","100/4"

40 PR1NTCHR$(8)CHR$(14).:POKE
54296,15:GOTO 380

130 IF K=5 THEN FOR Z=1 TO MM:
PRINT"El"ws(z);:NEXTZ:
PRINT:PRINT"a IL";

360 IF K=5 AND MN< >4 THEN W$
(WW) =W$(WW) + "El "

470 IF K = 5 THEN PRINT TAB(12)
"CITYPE THESE WORDS":MM = 4

472 PRINT Ll$:A$ =
"":FORZ=

1T010:01 = 65 + RND(1)*26
473 Q2=35+ INT(RND(1)*23)
474 IF RND(1)> .50 THEN Q1 =Q1 +128
480 A$ = A$ + CHR$(02) + CHR$(01):

NEXT
540 data"$174.374","Don't",

"And","Account","Kill",
"87.54%","10,29"," hello!"

550 data"(2 + 6*1 — 8)","These",
"17 —3 — 67","Can't","Then",
"LDA# 248","You&Me","Fred"

560 data" — Ravi*","Year'1984",
"&x)!KQ?","Com-64"," # (XxX) #"

570 data"Typing","Tutor","873Pence",
"(AdGjL)","STA$C0B2",
"Computer","A$ + STR$(1)"

20 DIM A$(30)
30 FOR T=1 TO 30:READ A$(1):NEXT
40 A$ = "!A'"'S # D$F%G&H'J(K)L=; :

{f + • < > ?":A2$ = A$
420 PRINTTAB(6,10)A2$
430 FOR T=1 TO 30
460 PRINTTAB(5+ T,9)""TAB

*!%$ # • ^ ,"fl 03,964",Silver,
Ordering,Price,Socks,Mr.F.Callen,
Projects,Marker,Hello

1340 DATA %$hh&fljKLUs,'&yttehJK
YHDS,EP© # 9272EJWe,HEGENi
@@*a{},kjgil — I {fe""YGW

1350 DATA Found,Gazelle,Delivery,
Words,hfhhFJD,KdIdee# $

1141
10 OB$ = "!A" + CHR$ (34) +

"S# D$F%G&H'J(K)L+ • = < >?"
20 POKE329,0:CLS
210 AP =1250
220 FOR K =1 TO 24 	•
320 AP= 1250+ RND(24)
430 P$= MID$(OB$,RND(24),1)
999 POKE329,255:CLS:END
1020 PRINT©259,0B$
9000 DATA PRINT # ,Shown, &H4000,

Out!!, (under), H + 9 =1 D,$500.
10,D/100 %,They're,** list**

9010 DATA Extra,Charge,DAILY,
Account, Month,Reply,Today,
Manage,Section

9020 DATA LONDON,Shall,Touch,;
—;; —;,Success,Out-of,
Replace, Country, Drive

The lower levels of the test now present you
with all the characters which are only available
when the keys are shifted—punctuation, math-
ematical symbols etc. To make it harder for
you, they are mixed in with the letters of the
home keys, which means you have to return
your fingers every time.

On the higher levels, you now get a list of
words and groups of characters as before,
except that this time you will find capital
letters and shifted symbols mixed in with the
lower case. Your computer will test your speed
and accuracy on these words and character
groups. And if you find that you get too good
at these particular test examples, you can
always give yourself a new set of DATA. You
must remember to keep the total number of
DATA entries the same, however. When you
can find all of the keyboard characters—
without looking and without hesitating—you
can move on to the next section.

1... —

(5 + T,10)B2$
530 PRI NTTAB(5 + T,9)" ❑ "TAB

(5+T,10)82$
630 PRINTTAB(6,10)A2$
650 P = RND(30):X= P + 5
820 P= RND(94) + 32:B2$ = CHR$(P)
950 P = RND(30)
980 PRINTTAB(17,14) B2$

"IIIDEDE1111000000"
1150 B2$ = A$(RND(30))
1180 B2$ = B25 + "CI" + A$(RND(30))
1330 DATA Librarie,s,Sounds,Input,

Notebook,Commuting,Will(192),
A5(102),Stone(13),pounds(89),

Note, on the Tandy you'll have to change the
329 to 282 in Lines 20 and 999.

On the Dragon and Tandy, you cannot
PRINT lower case characters on the screen.
Instead these are displayed as an inverse
character—g instead of S, for example. It
may take some time to get used to these.

On the Commodore change to lower case/
graphics mode to enter the DATA statements.

SPEED GAME
Now's the time to think about improving your
accuracy and speed. One of the best ways to do
this is to type to the beat of a metronome, or
something similar, which will improve your
regularity and rhythm. Then, as you get more
proficient, you can speed up the metronome—
and hence your typing.

But why bother using a metronome, when
your computer has a built-in clock? The next
program is a complete, new typing exercise
that is laid out like a game—where your score
depends on how good you are with the
keyboard. It is in two parts. The first part
displays a line of characters selected at
random—you have to type the characters as
they appear in sequence. The second part is
harder—because now the characters are
thrown up on the screen at random, one by
one, so you have no clue as to what is next.

Before the test starts, you can select your
own level of difficulty. This is done by telling

the computer how fast you want the letters to
be displayed—in other words, how many
characters in a minute you want to type. The
computer will then set you a limited time
within which you have to type each character,
or else you will be given an error score. On the
first level this is done by a moving indicator
which shows you which letter you should be
typing, and on the second level it is done by
flashing up the character for a set time only.

Before you start the first test, you can
choose whether you want the normal keyboard
(letters only) or extended keyboard (all sym-
bols, too). Also before you start the second
level (the characters test), you can decide how
long you can keep it up. You will be asked how
many characters in total you want to be in the
test. When the computer has displayed them
all, it will stop and give you a score based on
your errors.

It's not just overall speed that counts to beat
the computer at this challenging test, because
you need to build up a steady rhythm. This
will be of real benefit to anyone who wishes to
increase their general typing speed. To help l
you to gain the habit, the computer will give
you a sound signal as well as the visual prompt
for each letter.

Now type in the program itself, and put
your skills to the test:

10 BORDER 7: PAPER 7: INK 0: CLS
20 LET a$ = "ABCDEFGHIJKLMNOPQRS

TUVWXYZ"
30 LET a$ = a$ + "abcdefghijklmnop

qrstuvwxyz"
40 LET a$=a$ + "1234567890!@# $%&'()"
50 LET a$=a$ +CHR$ 34+"< >;— +

= E?r,."
60 PRINT INVERSE 1;AT 6,7;" ❑ TEST 1 OR

TEST 2E1 "
70 IF 1NKEY$="" THEN GOTO 70
80 LET i$=1NKEY$: IF i$="2" THEN GOTO

400
90 IF i$< > "1" THEN GOTO 70

100 CLS : INPUT "How many characters a
minute?[=1";cpm

110 LET t=3000/cpm
120 LET s$=""
130 FOR n=1 TO 30
140 LET s$=s$ +a$(1NT (RND•84) +1)
150 NEXT n
160 PRINT BRIGHT 1;AT 11,1;s$
200 GOSUB 800: LET er= 0: FOR r=1 TO 30
210 POKE 23672,0: POKE 23673,0
220 PRINT AT 10,r —1,"
230 BEEP .02,20
240 IF PEEK 23672 +256*PEEK 23673> =t

THEN LET er= er +1: GOTO 300
250 LET i$=1NKEY$: IF i$="" THEN GOTO

240
260 IF i$ = s$(r) THEN PRINT AT 12,r;"1— :

GOTO 280
270 LET er= er + 1
280 IF PEEK 23672 + 256*PEEK 23673<t

THEN GOTQ 280
300 NEXT r,

310 PRINT AT 16,3;"YOU GOT111";er;" ❑ OUT
OF 30 WRONG"

320 FOR f=1 TO 200: NEXT f
330 GOTO 20
400 CLS : INPUT "Number of keys a

minute?111";cpm
410 INPUT "Number of characters?El ";r
420 INPUT "(N)ormal or (E)xtended keys? ❑ ";

LINE m$
430 IF m$= "N" OR m$="n" THEN LET

a$=a$(TO 52): GOTO 450
440 IF m$< >"E" AND m$< >"e" THEN

GOTO 420
450 LET t=3000/cpm
460 GOSUB 800
470 LET er = 0
480 FOR n=1 TO r
490 POKE 23672,0: POKE 23673,0
500 LET r$=a$(INT (RND*LEN a$) +1)
510 PRINT INVERSE 1;AT 10,15;r$; INVERSE

0;AT 11,15;" El"
520 BEEP .02,20

810 FOR n=1 TO 16
820 PRINT AT 2,5+ n;c$(n)
830 PAUSE 10
840 NEXT n
850 BEEP .2,10
860 PRINT AT 2,0;TAB 31;" ❑ "
870 RETURN

10 FOR Z=1T040:L1$= L1$ +" —":
NEXT:L1$ = "A" + L1$

20 PRINT "0 ErTAB(7)
"******TYPnING EITUTENR*****"

30 PRINTCHR$(8)CHR$(14):
POKE 54296,15:GOTO 260

40 S= 0:VW/ = 1:ER =0:NM =0:N = 0
50 POKE53280,5

111111123BEI"
160 IF TI <TM THEN 160
170 W= 54276:A= 54277:NM = NM + 1:

POKE 53280,6
180 IF K=1 THEN PRINT"I§A

Agg"TAB(10+(X-1))" ❑ "
190 POKE W,33:POKE A,50:

POKE 54273,150
200 POKE 54273,0:POKE W,32
210 IF K=1 AND N<20 THEN 50
220 IF K=2 AND N <TL THEN 50
230 PRINT "CIII"LlrillAT"KP

"KEY PRESSES PER MINUTE YOU GOT"

40 IF PEEK 23672+ 256*PEEK 23673> =t
THEN LET er= er +1: GOTO 580

540 LET i$=1NKEY$: IF i$="" THEN GOTO
530

550 IF i$=r$ THEN PRINT AT 11,15;"T":
GOTO 570

560 LET er= er + 1
570 IF PEEK 23672 + 256*PEEK 23673<t

THEN GOTO 570
580 NEXT n
590 PRINT AT 16,3;"YOU GOT ❑ ";er;" ❑ OUT

OF El ";n —1;" ❑ WRONG"
600 FOR f =1 TO 200: NEXT f
610 GOTO 20
800 LET c$ = "5..4..3..2..1..0"

44 PRINT "gi NANA ";:
IF K=1 THEN PRINT"IL
TAB(10)A$:POKE198,0

70 X= INT(RND(1)*20) + 1:N = N +
1:P= P+1:IF K=1 THEN X=N:GOTO 90

80 IFK=2THENX=INT(RND(1)*20)
+ 1:PRINTTAB(18)"k 9 BEI
X1111111111:011"MIDVAS,

90 IF K=1 THEN PRINT "I§Igg gg
Agg"TAB(1 0+ (X — 1))"

100 T1$ = "000000"
110 GET K$:IF K$="" AND TI <TM THEN

110
120 IF TI>TM THEN ER=ER+1:

GOT0170
130 1FK$ < >M1D$(A$,X,1) THEN 110
140 IFK = 1THENFORZ= 4TO1STEP — 1:

PRINTLEFT$("
giggggg",Z+6)TAB(10+
X-1)"Al ♦ ggle ❑ ":NEXT

150 IFK=2THENPRINT"ggigigg
gig"TAB(1 8)"ILEIBEI
g911111113:161PJILEI3g9

240 PRINT ER"OUT OF"NM"WRONG"
250 PRINT L1$
260 POKE 53280,6:POKE 53281,0:

POKE 198,0
270 PRINT"I§Igigggigggnigigg

A "TAB(1 5)"OPTIONSM
280 FOR Z=1 TO 2:PRINT TAB

(13)Z;":TEST";Z:NEXT Z
290 PRINT TAB(12)"A R ENTER CHOICE?"
300 GET K$:K=VAL(K$):IF K<1 OR K>2

THEN 300
310 INPUT"IDINPUT KEY PRESS PER

MINUTE";KP:IFKP < 1THEN310
320 TM = 3000/KP:INPUT" a NORMAL OR

EXTENDED KEYS (N/E)";NX$
330 IF NX$ < >"N" AND NX$ < >"E"

THEN 320
340 IF K=2 THEN TL=20:INPUT

"D INPUT NUMBER OF CHARACTERS";TL
350 PRINT"O"Llrill"
360 PRINT "CI TYPE THE LETTER WHEN YOU

HEAR THE BEEP"
370 SP =1:IF NX$="N"THEN SP= .5
380 PRINT Ll$:A$ = "":FORZ= 1

T010.5STEP SP:Q1 = 65 +
RND(1)*26

390 Q2=33+ INT(RND(1)*25)
400 IF RND(1)> .50 THEN 01 =

01 +128
410 IF NX$="N"THENA$=A$+

CHR$(01):NEXT:GOT0430

420 A$=A$ +CHR$(02)+CHR$(01):
NEXT

430 PRINT TAB(11)" PRESS KEY TO
START":POKE 198,0:WAIT 198,1

440 PRINT TAB(11)"00000
0000 ❑❑❑❑❑❑❑
❑ 0 ❑ "

450 GOTO 40

10 MODE1
20 *FX202,48
30 VDU23;8202;0;0;0;
40 CLS:INPUT"'"WHICH TEST 1 OR 2",G
50 IF G< >1 AND G< >2 THEN 40
60 CLS:INPUT'""(N)ORMAL OR

(E)XTENDED",C$
70 IF C$="n" THEN C$="N"
80 ON G GOTO 90,120
90 PROCFIR
100 *FX15,1
110 GOTO 40
120 PROCSEC
130 *FX15,1
140 GOTO 40
150 DEF PROCFIR
160 B = 0:F =1
170 CLS:PRINT"`LINE TEST":A$=""
180 INPUT"'"RATE OF KEY PRESSES PER

MINUTE",R:TF= 6000/R
190 FOR T=1 TO 30
200 IF C$="N" THEN A$=A$+

CHR$(RND(26) + INT(RND(1) + .5)
*32 + 64):GOTO 220

210 A$=A$ + CHR$(RND(94) + 32)
220 NEXT
230 PROCGO
240 PR1NTTAB(5,15)A$
250 N=30
260 FOR T=1 TO 30:X = T+ 4
270 PRINTTAB(X,14);"*"
280 B2$ = M1D$(A$,T,1)
290 PROCTIME
300 PRINTTAB(X,14);" ❑ "
310 NEXT
320 PROCMES
330 ENDPROC
340 DEF PROCSEC
350 B= 0:F=0
360 CLS:PRINT"`SINGLE CHARACTER TEST"
370 INPUT"'"RATE OF KEY PRESSES PER

MINUTE",R:TF= 6000/R
380 INPUT"'"NUMBER OF CHARACTERS

WANTED", N
390 PROCGO
400 X =19
410 FOR T=1 TON
420 IF C$="N" THEN B2$=CHR$

(RND(26) + INT(RND(1) +.5)"32
+64):GOTO 440

430 B2$= CHR$(RND(94) + 32)

440 PR1NTTAB(19,15)B2$
450 PROCTIME
460 NEXT
470 PROCMES
480 ENDPROC
490 DEF PROCMES
500 FOR T=1 TO 2000:NEXT
510 CLS:PRINTTAB(0,10)"YOU

GOT El ";B;" ❑ OUT OF 0 ";N;" 0 RIGHT"
520 PRINT""YOUR TYPING RATE

WASE";R;"fl PER MIN"
530 INPUT"PRESS RETURN FOR NEXT TEST"A
540 ENDPROC
550 DEF PROCTIME
560 IF F=0 THEN PRINTTAB(X,16)" ❑ "
570 *FX15,1
580 TIME= 0
590 SOUND1, —15,150,1
600 B$=1NKEY$(1)
610 IF B$=B2$ THEN B= B+1:

PRINTTAB(X,16)" A "

620 IF TIME> TF THEN 640
630 IF B$="" THEN 600
640 PRINTTAB(X,15)"0"
650 IF TIME <TF THEN 650
660 ENDPROC
670 DEF PROCGO
680 CLS:PRINT""PRESS THE KEY WHEN YOU

HEAR THE BEEP"
690 PRINTTAB(0,10);
700 FOR T=5 TO 1 STEP-1
710 A= INKEY(10):PRINT;T;
720 FOR P=1 TO 3:A= INKEY(10):

PRINT".";: NEXT
730 NEXT
740 A= INKEY(25):PRINT"GO"
750 A= INKEY(1):A=INKEY(50)
760 PRINTTAB(0,10)" Cl CI ❑ ❑ ED ❑

❑❑❑❑❑❑❑❑❑❑❑ 0 ❑❑❑ "
770 ENDPROC

Speeding up
When you're using the speed game pro-
gram it's best to start with the normal key-
board and a slow speed, say between30 and
50 characters per minute.

The danger to avoid is typing the fam-
iliar characters quickly and then slowing
down while you look for the characters
you're less sure of—particularly if you
choose the extended keyboard.

Once you get the hang of typing to a
constant rhythm you can select the ex-
tended keyboard and then gradually in-
crease your speed.

tgl !HI
10 CLS
20 PRINT@70,"WHICH TEST (1 OR 2) ?"
30 PRINT@104,"TYPE (0) TO QUIT"
40 A$=1NKEY$:IFA$<"0" OR A$> "2"

THEN 40
50 ON VAL (A$) +1 GOSUB 1000,600,200
60 POKE 329,255
70 ER = 0:W$="":B$=""
80 GOTO 20
200 CLS:INPUT"INPUT KEY PRESSES PER

MINUTE";KP
210 IF KP<1 THEN 200
220 INPUT"INPUT NUMBER OF

CHARACTERS ❑ ";NC
230 IF NC<1 THEN 220
240 NM= NC
250 PRINT:PRINT"NORMAL OR EXTENDED

KEYS (N/E) ?),

260 A$=INKEY$:1F A$ < >"N" AND
A$ < >"E" THEN 260

270 RN =90:ST=32:IF A$="N" THEN
RN = 58:ST=64

280 POKE 329,0
290 TM = 3000/KP
300 CLSO:PRINT"O PRESS THE KEY AFTER

THE BEEP ❑ "
310 PRINT @238,"000";:PRINT@270,

"0 00";:PRINT@302," 000";
320 W$=CHR$(RND(RN) +ST)
330 IF W$ >"Z" AND W$ <"a" THEN 320
340 PRINT@271,W$;
350 TIMER = 0
360 A$=INKEY$:1F A$= w' THEN 380
370 B$=A$:IF B$=W$ THEN SCREEN0,1
380 IF TIMER <TM THEN 360
390 SOUND150,1:1F B$=" THEN 350
400 W$ = CHR$(RND(RN) + ST)
410 IF W$>"Z" AND W$ <"a" THEN 400
420 PRINT@271,W$;
430 TIMER = 0
440 A$=INKEY$:1F A$=`"' THEN 460
450 B$=A$:IF B$=W$ THEN

SCREEN0,1
460 IF TIMER <TM THEN 440
470 SOUND150,1
480 IF B$ < >W$ THEN

ER = ER + 1:GOT0490
490 POKE1295,128
500 NC= NC-1:IF NC> 0 THEN 400
510 CLS:PRINT@448,"AT";KP;

"KEY PRESSES PER MINUTE"
520 PRINT"YOU GOT";ER;"OUT

OF";NM;"WRONG";
530 RETURN
600 CLS:INPUT"INPUT KEY PRESSES PER

MINUTE";KP
610 IF KP<1 THEN 600
620 PRINT:PRINT"NORMAL OR EXTENDED

KEYS (N/E) ?"

630 A$ = INKEY$:IF A$ < >"N" AND
A$ < >"E" THEN 630

640 RN = 91:ST= 31:IF A$ = "N" THEN
RN = 58:ST=64

650 TM = 3000/KP
660 CLS:POKE 329,0
670 FOR K=1 TO 32
680 CR= RND(RN) + ST
690 IF CR >90 AND CR <97 THEN CR =32
700 W$=W$ +CHRVCR)
710 NEXT
720 AP =1248
730 POKE AP,106
740 PR1NT@256,W$
750 TIMER =0
760 A$=INKEY$:1F A$=`"' THEN 780

770 B$=A$
780 IF TIMER <TM THEN 760
790 SOUND 150,1:1FB$="" THEN 750
800 TIMER =0
810 A$=INKEY$:IF A$="" THEN 830
820 B$=A$
830 IFTIMER <TM THEN 810
840 SOUND 150,1
850 IF B$ < > M1D$(W$,AP —1247,1) THEN

ER= ER + 1:GOTO 860
855 POKE AP + 64,94
860 POKE AP,96
870 AP = AP + 1
880 IF AP =1280 THEN 910
890 POKE AP,106
900 B$=`"':GOTO 800

910 CLS:PRINT@481,"AT";KP;
"KEYS PER MINUTE"

920 PRINT" YOU GOT";ER;"OUT OF 32
WRONG !";: RETURN

1000 CLS
Again, on the Tandy change the 329 to 282 in
Lines 60, 280 and 660.

TAKING THINGS FURTHER
Practise all the exercises so far, and you will
have a thorough knowledge of all the character
keys. This part of the course is self-contained
in itself. However, in a later article, you will get
an opportunity to practise your skills on some
real sentences, and see how to lay out a neat
passage of typing.

Now is the time to fill your empty
adventure world with objects. We
show you how to enter your list of
items into the program, and then
how to manipulate them

At the end of the last part of Gaines Pro-
gramming you had a complete set of locations
for your adventure and had given the adven-
turer the ability to wander round the adven-
ture world. But at this stage, the activities of
the adventurer are rather pointless, since
nothing yet happens in any of the locations. So
now is the time to go back and see what you
had planned to include at each point.

Now you'll see how to add some
more routines which will put all the
objects which make up the quest in
the right place. Other routines will
allow the adventurer to collect the
objects or leave them behind.
You'll also type in a routine which
will list an inventory of all the
objects being carried—very useful
when faced with a problem.

LOAD the program from last time,
ready to receive the new routines.

0 BJ ECTS
The machine needs to know three things about
the objects in the adventure: the location
number where the object is placed initially,
ready for the adventurer to find it, a name for
the object, and a longer description which will
include something about the object's situation.
You need all three pieces of information,
because firstly the computer needs to pick
an object to suit each location. Then it
will need to tell the adventurer what
is in the location—hence using the long
description. And finally, it needs the short
name for use in instructions or inventories.

The location numbers will be fed into one
array, the object title into another, and the
longer descriptions into yet another. The three
arrayi will be manipulated in parallel by the
program—each element of the array holds an
equivalent piece of information about the
objects, the first is the location number, the
second is the object's name, and so on.

Add these extra lines to your program:

160 REM **SET UP ARRAYS FOR OBJECTS**
170 READ NB
180 DIM B(NB): DIM B$(NB,14): DIM

S$(NB,40)

■ ENTERING THE DATA STATEMENTS
FOR THE OBJECTS

■ SHORT AND LONG DESCRIPTIONS
■ PRINTING THE OBJECTS IN THE

CORRECT LOCATIONS

■ MORE VERBS
■ CHOOSING THE RIGHT ROUTINE
■ PICKING UP AND DROPPING THE

OBJECTS
■ ADDING AN INVENTORY ROUTINE

190 FOR 1=1 TO NB: READ B(1),B$(1),S$(1):
NEXT I

200 DATA 7,4,"BAG","A BAG OF MARBLES
IS HERE"

210 DATA 14,"BRICK","A BRICK LIES ON
THE GROUND"

220 DATA 24,"CHAIN","THERE IS A CHAIN
HANGING"

230 DATA 0,"GUN","THERE IS A GUN ON
THE FLOOR"

240 DATA 0,"EYEBALL","A JEWELLED
EYEBALL LIES ON THEE ❑ GROUND"

250 DATA 22,"LAMP","YOU SEE A LAMP"
260 DATA 0,"TAX INSPECTOR","A TAX

INSPECTOR SUDDENLY APPEARS"

160 REM **SET UP ARRAYS FOR OBJECTS**
170 READ NB
180 DIM OB(NB),OB$(NB),SI$(NB)
190 FOR 1=1 TO NB: READ

OB(1),OB$(1),S1$(1):NEXT
200 DATA 7,4,BAG, A BAG OF MARBLES IS

HERE
210 DATA 14,BRICK,A BRICK LIES ON THE

GROUND
220 DATA 24, CHAIN,THERE IS A CHAIN

HANGING
230 DATA 0,GUN,THERE IS A GUN ON THE

FLOOR
240 DATA 0,EYEBALL,A JEWELLED EYEBALL

LIES ON THE GROUND
250 DATA 22,LAMP,YOU SEE A LAMP
260 DATA 0,TAX INSPECTOR,A TAX

INSPECTOR SUDDENLY APPEARS

ft4:
160 REM **SET UP ARRAYS FOR OBJECTS"
170 READ NB
180 DIM OB(NB),OB$(NB),SI$(NB)
190 FOR 1=1 TO NB:READ

OB(1),OB$(1),S1$(1):NEXT
200 DATA 7,4,BAG, A BAG OF MARBLES IS

HERE
210 DATA 14,BRICK,A BRICK LIES ON THE

GROUND
220 DATA 24,CHAIN,THERE IS A CHAIN

HANGING
230 DATA 0,GUN,THERE IS A GUN ON THE

FLOOR
240 DATA 0,EYEBALL,A JEWELLED EYEBALL

LIES ON THEE ❑ GROUND
250 DATA 22,LAMP,YOU SEE A LAMP
260 DATA 0,TAX INSPECTOR,A TAX

INSPECTOR SUDDENLY APPEARS

Each of the Lines from Line 200 to Line 260
contains the three pieces of DATA referring to
the same object. Line 200 has one extra piece
of DATA in the list. The figure 7—the first
piece of DATA—tells the machine how many
sets of DATA there are.

Once the number 7 has been READ by Line
170, three arrays are DIMensioned to that size
by Line 180.0B will contain the location of
each object—either a location number, or 0 if
the object doesn't yet exist (in other words,
things like the eyeball, which have to be
uncovered during the adventure), or —1 if it is
being carried by the adventurer. OB$ will
contain the short descriptions, and S1$ will
contain the longer ones.

Line 190 fills the arrays with DATA from
Lines 20Vto 260. The DATA is arranged in sets
of three as follows: location number, short
description of the object, long description of
the object.

When you use this routine in other adven-
tures, you will not have to make too many
alterations to its structure because adjusting
the first piece of DATA will automatically take
care of the size of the FOR ... NEXT loops and
the array DIMensions.

PLANTING THE OBJECTS
The program now contains all the information
about what all the objects are and where they
are to be put. The next routine displays the
longer object description at the appropriate
location:

360 REM **TO PRINT OBJECT IN
APPROPRIATE LOCATION**

370 FOR 1=1 TO NB: IF B(I) = L THEN PRINT
S$(I)

380 NEXT I

ECK la NCI kl
360 REM **TO PRINT OBJECT IN

APPROPRIATE LOCATION**
370 FOR 1=1 TO NB:IF OB(I)= L ❑ THEN

PRINT SI$(I)
380 NEXT

At this stage make a small alteyation to
Lines 330 and 340: change GOTO 400 to
GOTO 370. Lines 370 and 380 check through
the object location array. If any of the location
numbers match the current location—L-
then the short description is displayed follow-
ing the location description. This routine can
be used without alteration in other adventures.

MORE VERBS
The adventure now has some objects scattered
around its locations, but because the machine
doesn't yet understand any words but NORTH,
SOUTH, EAST and WEST, the poor adventurer
can't do anything with them. Imagine the
frustration of not being able to collect that very
desirable bag of marbles or to defend yourself
against the tax inspector! So you need to give
the computer a vocabulary of words it can
recognize, telling it what to do with the
objects. Later, you'll see what to do if the
player enters a word that isn't in the vocabu-
lary you have programmed into the machine.

As the program treats all the direction
words as verbs, the best place for the verbs
describing what to do with the objects will be
in the array R$, and the best place for the
corresponding numbers will be in R.

You'll therefore have to make a few alter-
ations starting with Line 130. The limits of the
FOR ... NEXT loop will have to be changed.
Either type in the whole line afresh or use the
machine's editor to change the existing line.
Whichever way you choose to do it, Line 130
should now read:

130 FOR K=1 TO 19: READ R$(K),
R(K): NEXT K

IICKI 	tZ !Hi
130 FOR K=1 TO 19:READ R$(K),

R(K):NEXT

Now add Lines 140 and 145:

140 DATA "SWIM",5,"EMPTY",6,
"LIGHT",7,"QUIT",8,
"INVENTORY",9,"KILL",10,
"SHOOT",10,"HELP",11

145 DATA "GET",2,"TAKE",2,
"CARRY",2,"PUT",3,"LEAVE",3,
"DROP",3,"PULL",4

14 !HI
140 DATA SWIM,5,EMPTY,6,LIGHT,7,

QUIT,8,INVENTORY,9,KILL,10,
SHOOT,10,HELP,11

145 DATA GET,2,TAKE,2,CARRY,2,
PUT,3,LEAVE,3,DROP,3,PULL,4

Each verb has a corresponding number. Verbs
with the same number have the same meaning
as far as the computer is concerned, and will
perform the same operation. Designing the
program so that it will understand GET, TAKE
and CARRY, for example, will save the adven-
turer wasting time needlessly trying to dis-

cover which of these words to use. You can
easily add your own words to the DATA lines by
changing the FOR ... NEXT loop in Line 130
and tacking the extra DATA on the end of Line
145. You'll have to make a number of alter-
ations elsewhere in the program, but in a later
part of Games Programming you'll be told
exactly what to do.

FINDING NEW ROUTINES
Having entered all the verbs in the last routine,
the computer will need some routines which
will enable it to comply with the instructions,
such as getting the adventurer to carry objects,
for example.

The subroutine starting at Line 3010 de-
fines V$, N$ and I, which is a number from
array R—you've already typed in this
subroutine.

This short routine will enable the machine
to pick out the right routine according to the
value of I—the meaning of the adventurer's
input.

The Spectrum has no ON ... GOTO as used in
the programs for the other computers, so the
program lines have to be a little different.

You already have an array, G, which con-
tains line numbers for the location descrip-
tions. The line numbers needed for the new
routines can be added to this array.

This is why the Line 30 you typed in reads:

30 FOR N=1 TO 4: FOR M =1 TO 11: READ
G(M,N): NEXT M: NEXT N

and why you have this line containing all the
line numbers you'll need. (For a fuller explan-
ation see page 346):

70 DATA 1010,1150,1240,1310,1410,
1460,1500,1360,1080,1550,3110

Now add the routine which will pick out the
right routine according to the value of I:

500 REM **FIND OPTION**
510 IF 1=0 THEN GOTO 520
520 PRINT '"I DON'T KNOW HOW TO ❑ ";VS:

GOTO 370
If the 'Check Instruction' subroutine—
starting at Line 3010 didn't find a match for
V$ in R$, then I is set to zero, and Line 510
causes the message I DON'T KNOW HOW TO ...
to be displayed. If I has any other value, Line
515 finds the correct line number in array G
and executes a GOTO.

tZ
500 REM ** FIND OPTION **
505 IF I = 0 THEN GOTO 520
510 ON I GOTO 1010,1150,1240,1310,

1410,1460,1500,1360,1080,1550,3110
520 PRINT:PRINT "I DON'T KNOW HOW

TO El ";V$:GOTO 370

Each of the numbers after the ON ... GOTO in
Line 510 is the start of a routine. Each value
of I is a different verb or group of verbs. If
I= 10, for example, the 'kill' routine will have
to be selected—it's the tenth number in the
line so the routine starts at Line 1550.

If the 'Check Instruction' subroutine—
starting at Line 3010—didn't find a match for
V$ in R$, then I is set to O. In that case the ON

GOTO in Line 510 will not have any effect.
The message in Line 520 will be displayed.

• Make sure that the three pieces of DATA
connected with the objects are READ into
the correct array. If you try to feed string
DATA into a numeric array, you will receive
an error message, or you may find that a
short description appears when you are
expecting a long one.
• Be very careful to match the order of the
pieces of DATA with the order of the arrays
in the READ statement because the same
problem may occur. The order is location,
short description, long description.
• Do a 'dry run' on your adventure once
you have entered the objects and make sure
that the objects appear at the right
locations.
• Use your grid when checking the objects
to make sure you haven't missed any.

ACQUIRING THE OBJECTS
You already have the routine for when 1=1 in
your machine. I =1 when the adventurer has
given a direction word and the routine is at
Lines 1010 to 1060.

When I = 2 the adventurer has typed a 'Get'
word—GET, TAKE or CARRY. This routine will
allow the adventurer to pick up and keep any
object that is there at the present location.

The routine looks like this:

a
1140 REM **GET**
1150 FOR G =1 TO NB
1160 IF N$= B$(G, TO LEN N$) THEN GOTO

1190
1170 NEXT G
1180 PRINT "I DON'T UNDERSTAND ❑ ";

N$: GOTO 330
1190 IF B(G) = —1 THEN PRINT "YOU'VE

GOT IT": GOTO 330

1200 IF B(G) < > L THEN PRINT "IT ISN'T
HERE": GOTO 330

1210 PRINT "OK": LET B(G) = — 1
1220 GOTO 330

1140 REM ** GET
1150 FOR G=1 TO NB
1160 IF N$=LEFT$(OB$(G),LEN(N$)) THEN

1190
1170 NEXT
1180 PRINT "01 DON'T UNDERSTAND ❑ ";

N$:GOTO 330
1190 IF OB(G) = —1 THEN PRINT "YOU'VE

GOT IT":GOTO 330
1200 IF OB(G) < > L THEN PRINT "IT ISN'T

HERE":GOTO 330
1210 PRINT "MOKIMI":0B(G)= —1
1220 GOTO 330

1E1 NC
1140 REM — GET**
1150 FOR G=1 TO NB
1160 IF 1NSTR(OB$(G),N$) =1 THEN GOTO

1190
1170 NEXT
1180 PRINT"Ill I DON'T UNDERSTAND ❑ ";

N$:GOT0330
1190 IF OB(G)= —1 THEN PRINT "YOU'VE

GOT IT":GOTO 330
1200 IF OB(G) < > L THEN PRINT "IT ISN'T

HERE":GOTO 330
1210 PRINT "OK":OB(G)= —1
1220 GOTO 330

Lines 1150 to 1170 search the array containing
the short object descriptions—B$ in the case of
the Spectrum, and OB$ in the case of the
others—for the object that the adventurer has
named. If the named object is found, then the
program jumps to Line 1190. If the object is
nowhere in the adventure, Line 1180 displays
the message I DON'T UNDERSTAND, followed
by the name of the object the adventurer has
typed in.

Assuming that the named object has been
found, two checks will have to be made. Line
1190 checks the element of the object location
array—B, or OB—to see if the object is already
being carried. If it is being carried (the value of
the array element = — 1) then the message
YOU'VE GOT IT is displayed.

Line 1200 checks if the object is present by
checking the location array again. If it isn't,
then the program says IT ISN'T HERE. You can
always change these messages of course, if they
don't suit your adventure.

If the object isn't being carried and it is at
the same location as the adventurer, Line 1210
says OK and the element in the object location
array is changed to —1.

DROP
The 'Drop' routine does exactly the opposite
to the last one. It enables the adventure to
abandon any unwanted objects.

1230 REM **DROP**
1240 FOR G=1 TO NB
1250 IF N$= B$(G, TO LEN N$) THEN GOTO

1270
1260 NEXT G: PRINT "I DON'T

UNDERSTAND ❑ ";N$: GOTO 330
1270 IF B(G) < > —1 THEN PRINT "YOU

HAVEN'T GOT IT": GOTO 330
1280 PRINT "OK": LET B(G) = L
1290 GOTO 330

1230 REM ** DROP **
1240 FOR G =1 TO NB
1250 IF N$=LEFT$(OB$(G),LEN(N$)) THEN

1270
1260 NEXT:PRINT "I DON'T

UNDERSTAND ❑ "N$:GOTO 330
1270 IF OB(G)< > —1 THEN PRINT "YOU

HAVEN'T GOT IT":GOTO 330
1280 PRINT "OK":0B(G) = L
1290 GOTO 330

El Xi !HI
1230 REM **DROP**
1240 FOR G=1 TO NB
1250 IF 1NSTR(OB$(G),N$) =1 THEN 1270
1260 NEXT:PRINT"I DON'T

UNDERSTAND ❑ ";N$:GOTO 330
1270 IF OB(G)< > —1 THEN PRINT "YOU

HAVEN'T GOT IT":GOTO 330
1280 PRINT "OK":0B(G) = L
1290 GOTO 330

The routines work in a very similar way to the
`get' routines. The short description arrays are
again searched—this time by Lines 1240 to
1260. If the object that the adventurer has
named is in the array then Line 1270 checks if
the adventurer is carrying the object. If it isn't
being carried, the message YOU HAVEN'T GOT
IT is displayed.

If the adventurer is carrying the object Line
1280 says OK and the appropriate element in
the object location array—OB, or B—is adjus-
ted. It now takes the number of the current
location—L—rather than —1 which meant
that it was being carried.

LISTING LOOT
The forgetful adventurer will be very glad of
an inventory so that all the objects that have
been picked up can be listed on request. Here's
a routine which will do just that:

1070 REM *.*INVENTORY**
1080 PRINT "YOU HAVE:I0 ";: LET IN = 0
1090 FOR G=1 TO NB
1100 IF B(G)= —1 THEN PRINT TAB

10;B$(G): LET IN = IN +1
1110 NEXT G
1120 IF IN=0 THEN PRINT "ZILCH"
1130 GOTO 330

1070 REM ** INVENTORY
1080 PRINT "LYOU HAVE:13 ❑ ";:

IN=0
1090 FOR G=1 TO NB
1100 IF OB(G)= —1 THEN PRINT

TAB(10)OB$(G):IN = IN +I
1110 NEXT
1120 IF IN = 0 THEN PRINT "ZILCH"
1130 GOTO 330

El VZ
1070 REM**INVENTORY**
1080 PRINT "YOU HAVE:111";:IN= 0
1090 FOR G =1 TO NB
1100 IF OB(G)= —1 THEN PRINT

TAB(10)OB$(G):IN = IN +1
1110 NEXT
1120 IF IN = 0 THEN PRINT "ZILCH"
1130 GOTO 330

YOU HAVE is displayed by Line 1080 ready for
the list of items. The FOR ... NEXT loop checks
through each element of the object location
array in turn. This time the important ele-
ments are the ones containing — 1, meaning
that the object is being carried. If the value of
any of the elements is —1, then the object
description is printed from the short descrip-
tion array. The inventory counter IN is in-
creased by 1.

If no objects are being carried IN remains at
zero and Line 1120 displays ZILCH instead of
the list of objects.

The 'Get', 'Drop' and 'Inventory' routines
can be used as they stand as long as NB has
been defined in an earlier routine.

Now SAVE the program ready for the final
routines next time. These routines are the ones
concerning the tax inspector, the brick, the
lamp, finding the eyeball, ending the adven-
ture, and, finally, the instruction describing
the object of the quest.

If you RUN the program at this stage you'll
find that while parts of it work, there are also
some rather strange things happening. The
reason for this is that there are still a number of
routines which do not exist yet. If you input
some words the program will try to jump to
non-existent lines.

Is it possible to use a speech
synthesizer with an adventure?
You could make your adventure more
interesting by programming the machine
so that it will announce the messages,
directions and the descriptions of the
objects rather than display them on the
screen.

Look in your synthesizer manual to
see how the machine can be made to
speak, and substitute the instructions for
the PRINT statements.

INPUT will be looking at
speech synthesizers in
depth in a later article.

Bring your graphics commands up to
date and bridge the gap between
drab, lifeless visuals and that bright,
professional look you always dreamt
your programs could achieve

Although you may know by now what most of
the graphics commands do, you may not be
putting them to the best use.

The colouring commands, for instance, are
much more versatile than they first appear and
can do a lot more than simply fill in blocks of
colour. Here are a few ideas and techniques to
help brighten up your graphics.

a
The Spectrum's PLOT and DRAW commands
can be used in a wide variety of ways, but you
may find that they don't always produce the
effect you're after. In many cases this is due to
the limitations of the high resolution graphics
screen—which will not accept different
colours when these are in adjacent pixels
within a square on the text screen. But there
are several other reasons why you might not
always achieve the results you expect. What
you should be doing now is to allow for these
effects in your programs and even take advan-
tage of them.

For example, if the method of shading
you're using looks rather uneven, then build
this into your program so it looks deliberate.
And if you find that colours overflow into
other areas of your drawing or you need more
than two colours in a single character square
then arrange your drawing so that any colour
change starts on a new square. You'll still have
a problem with curves but you can go a long
way to lessening the effect.

So whatever you are doing, if you can't get
the effect you want, be willing to adapt and use
what's possible. You can then look for methods
for refining your drawings later as you learn
more about the machine. Here, then, are some
ideas for using shading and colouring that you
can use in your own programs.

SHADING THE SCREEN
If you have tried the programs in the previous
graphics articles (pages 84 to 91 and 184 to
192), you should already have a good idea of
some of your computer's potential for making
pictures on the screen. And if you have made
Our own experiments using the techniques
explained there, you will have discovered even
more.

But now is the time to look at extending

your computer graphics again, by exploring
some of the more sophisticated uses for the
drawing and colouring commands that you
have already used. And at the same time, you
will be able to extend your repertoire with a
range of new pictures to call up on the screen,
or use as the basis for your own ideas.

This short program, for example, PLOTS
pixels in randomly generated positions. Type
it in, RUN it, and see how long it takes to fill in
the entire screen:

10 LET x= INT (RND*256)
20 LET y= INT (RND*176)
30 PLOT x,y
40 GOTO 10

You'll have to be patient to see a result, and
this would be an impossibly slow method if
you wanted to fill in completely a large area in
a graphic. However, what the program does
much more usefully, is to shade in an area—

which it does quite quickly, if not in an even
manner.

By adding one line to the program, you can
create a much better effect, which you could
use on its own or within a program. Type in
this line, and then RUN the program again.

25 IF (x > 35 AND x < 90) AND (y>35 AND
y < 90) THEN GOTO 10

After only a short time you should be able to
see that the computer is leaving a square totally
clear from the pixels.

Line 25 checks the values of x and y, and if
both of them fall between 35 and 90 then the
computer jumps back to Line 10 to choose
new values. So you get a blank area appearing
between 35 and 90 in both directions, which
forms a square at these coordinates. .

You might like to use this facility in a game:
you could PRINT something in a square, and
then gradually fill in the rest of the screen,

■ MAKING MORE USE OF COLOUR
■ SHADING AND COLOURING THE

SPECTRUM'S SCREEN
■ FLASHING COLOURS AND LARGE
CHARACTERS ON THE COMMODORES

■ USING GCOL TO AND AND OR
COLOURS ON THE ACORNS

■ MORE ON PSET, PRESET AND
COLOR ON THE DRAGON AND

TANDY

while your words are still clearly visible on the
screen. The technique would be equally effec-
tive as a means of highlighting a message on
the screen—such as a title page of a program or
game.

The conditions in Line 25 are quite com-
plex. On page 35, you saw how you can have
more than one condition in an IF ... THEN
statement by using the functions AND and OR.

These two functions have precisely the
meanings that they do in ordinary English. So,
in Line 25, above, x must be more than 35 AND
less than 90, AND y must be less than 90 AND
more than 35 for the computer to GOTO 10.

The brackets in between the two halves of
the line separate the conditions for x and y (in
fact the conditions are the same, but they still
need to be separated by an AND). In this
particular example, you could remove the
brackets, but only because each of the func-
tions is AND: if you use a mixture of ANDS and

ORs then the brackets are essential. You will
see what an OR does in the following example.

You can change the area that is left un-
touched in several ways. For example, change
the AND in between the two sets of brackets in
line 25 to OR. Instead of leaving a blank
square, you should now see a blank cross on
the screen.

Try changing Line 25 to:

25 IF (x>110 AND x<145 AND y>40 AND
y<136) OR (x>40 AND x < 215 AND
y > 70 AND y<100) THEN GOTO 10

You can leave any shape you like clear of dots
but the more complicated it is, the more
conditions you need in the IF ... THEN state-
ment and the longer the computer will take
checking them. Even a triangle or a circle
would require a long set of conditions, with the
result that the computer would take a long time
to PRINT each pixel.

If you want to create your own shapes, you
should restrict them to vertical and horizontal
lines, as these need less checking, and so take
less time to appear.

DRAWING AND COLOURING
In earlier articles, you have seen how to DRAW
some quite detailed pictures on your Spec-
trum. And if you have LOADed any commercial
programs which have a LOADing picture to
introduce the program, you'll be aware that the
Spectrum is capable of quite detailed pictures.

However, there is one problem for the
budding graphics programmer. In the ordi-
nary way, the Spectrum has a big limitation
when it comes to DRAWing a picture and
hading it in with colour. If you haven't come
cross this already, here is an example:

5 BORDER 7: PAPER 7: INK 4: CLS
10 FOR x=1 TO 10
20 PRINT"•./•11/11•.."
30 NEXT x
40 PLOT INK 2;0,175
50 DRAW INK 2;120,-80
60 INK 1: CIRCLE 100,95,50

This colours an area green using block
graphics, then DRAWs a diagonal red line and a
blue circle. Or at least, that is what should
happen. In fact, where the lines cross the green
area, all those squares they touch become
converted into the new colour.

Of course, there are ways to avoid this, but
most need a lengthy program to enable the
Spectrum to handle the information.

A later article will look at ways to do this,
but there is a simple alternative—to avoid the
problem areas completely. This is what the
earlier coloured graphics, like the golf course
on page 185, did. There, the screen colour was
specified first, and then the DRAWn lines were
placed over it. And no DRAWn line was taken
over an area which had already been used for
another piece of DRAWing or a block graphic.

To explore this more fully, and at the same
time experiment with drawing arcs, type in the
following program. It draws a coloured picture
of a car:

80 BORDER 2: PAPER 6: INK 0: CLS
90 FOR n=8 TO 15
100 CIRCLE 80,47,n: CIRCLE 180,47,n
110 NEXT n
120 PLOT 62,51: DRAW 38,-5,— PI
130 DRAW 60,0: DRAW 40,0,— PI
200 FOR n=1 TO 10: READ a,b,c: DRAW

a,b,c: NEXT n
210 PLOT 112,48: DRAW 45,0: DRAW

22,20, — PI/2
220 DRAW 7,15: DRAW —35,23: DRAW

—40,0: DRAW 0, — 58
230 PLOT 115,104: DRAW 34,0: DRAW

30, — 19
240 DRAW — 64, - 5, — .25: DRAW 0,24
250 PLOT 40,83: DRAW 52,5,.3: DRAW

6,20,.3
260 PLOT 30,55: DRAW —5,1: DRAW 0,5:

DRAW 5,1
270 PLOT 240,56: DRAW 5,1: DRAW 0,5:

DRAW —5,1

280 PLOT 36,75: DRAW INK 2; 184,0
290 PRINT OVER 1; INK 2;AT 13,4;"E";AT

13,28;"
300 FOR n=31 TO 0 STEP —1: PLOT 0,n:

DRAW INK 4;255,0: NEXT n
500 DATA 40,8,.2,0,10,0, —30,15,

.2, 20,5,.2
510 DATA —40,25,0, —60, — 2,.1, — 50,

—25,.2
520 DATA —10, — 20, — .25,0, — 8,0,31,

— 3,.2

Lines 90 to 110 draw a series of circles, each
one pixel larger in radius than the previous
one, which form the wheels of the car. There is
a dotted effect on the tyres, which is caused by
the Spectrum not being able to draw true
circles on the square grid of pixels. This means
that there is a slightly stepped effect to the
curve and some of the pixels are not part of any
of the circles, and so are not PLOTted.

Normally this might be a nuisance, but here
it is actually an advantage, since it gives the
wheels a more realistic appearance. One of the
keys to producing good pictures is to make use
of rather than be troubled by, the character-
istics of the medium.

Line 120 PLOTs a pixel at 62,51 which is the
starting position for the lines which form the
car. Using the FOR . NEXT loop in Line 200,
and Lines 120 and 130, the Spectrum READS
the information which it needs to DRAW the
outline of the car. The DATA for the FOR ...
NEXT loop is held in Lines 500 to 520. Notice
that all the curves are held in the form x, y, z,
which is the Spectrum command for a curved
line (an arc), where z specifies the curvature.

The first two numbers are the same as
usual: the number of pixels that you want the
last pixel in the new line to be above and to the
right of the present PLOT position. The third
number sets the angle of the curve. The
command to DRAW the curved bonnet of the
car is DRAW 38,-5,— Pl. Try changing the
last number (PI is roughly 3.14) and see how
curved a bonnet the computer will DRAW.

The details within the outline are sections:
the door and its window in Lines 210 to 240,
the rear window in Line 250, the bumpers in
Lines 260 to 270 and the `go-faster' stripe in
Line 280. Lines 290 and 300 simply add a
touch of colour to the picture: Line 290 puts in
the indicators (in red), and Line 300 fills in the
grass on which the car is standing.

By careful placing of the grass and car, you
can avoid the problem of having two colours in
each character square. Look at the grass
beneath the car in the program above. The car
has been positioned with its wheels reaching
down to the bottom of a character space, so
that the grass can start on the very next pixel

without changing the colour of the tyres. As
you can imagine, this means that you have to
plan the position of each element very
carefully.

Notice, though, that this is not always
possible. The go-faster stripe, for example, is
coloured red, and small parts of the outline of
the car in the same square have been changed
to red. With care, you can often avoid having
colour clashes in areas where it would show up
badly.

To practise your DRAWing, you might like
to change parts of the car. That way you know
what the changes you are making to the
program actually do and you can get used to
DRAWing and being able to imagine the fin-
ished result of your pictures without having to
DRAW them completely from the beginning.

No direct graphics commands are available on
the Commodore 64 and this means you have to
use something like the Simons' BASIC car-
tridge which offers these facilities. The major-
ity of the graphics related commands available
on Commodore 64s fitted with this accessory
have been explained already (see pages 84 to 91
and 184 to 192). Several others remain and
these relate to the use of text with graphics,
and to screen manipulation.

FLASHING
Flashing screen and prompt displays serve an
important function in certain types of
program—especially in games. Neither is par-
ticularly difficult to provide within a normal
BASIC program, (see page 49) but Simons'
BASIC provides a simple set of commands for
this: FLASH, BFLASH and OFF. These com-
mands cannot be used with high-res and
multicolour graphics modes.

The FLASH command alternates the screen
display between normal and reverse field
colours. It is used in the form:

FLASH 0,10

where the two numbers following the com-
mand specify the colour and speed. The first
value can range between 0 and 15 to encom-
pass the normal range of colours available on
the 64 (details are in your manual). Black
(colour set value 0) has been used here.

The second value controls the rate at which
the FLASHing takes place. The default figure if
you leave this value off is a FLASH once every
four seconds. But a figure in the range 1 to 255
can be entered to control the flashing speed up
to this maximum. Each unit corresponds to
one of the system timing units called a 'jiffy',
about one-sixtieth of a second.

FLASHing continues until the command OFF

is encountered. The pairing of the two com-
mands typically takes the form:

5 PRINT "0"
10 PRINT AT(12,10) "THIS IS FLASHING"
20 FLASH 0,1
30 PAUSE 3
40 OFF
50 PRINT AT(12,10) "I=100S0 IS THIS

0 El 0"
60 FLASH 0,5
70 PAUSE 3
80 OFF
90 GOTO 10

Try changing the values in Lines 20 and 60 to
alter colours and the FLASHing rate.

BFLASH is used to flash the screen border
area. It takes the form:

BFLASH 10,0,1

The first figure after the command regulates
the flashing rate and again the values can range
from 1 to 255 to give a maximum time of about
four seconds.

The second and third values relate to the
border colours—again using the normal range
of colour values for black and white.

To turn the border flashing off simply use:

BFLASH 0

CHARACTER COMMANDS
Text on a graphics screen can be useful for
annotation or labelling, serving a very nece-
ssary function on graphics produced for educ-
ational or business purposes.

Simons' BASIC has several commands of
this type. CHAR enables you to display text
characters one by one on a high-res or multi-
colour graphics screen. It is used in the form:

CHAR 10,50,65,1,4

The first pair of figures give the character
position on the screen in standard X and Y
pixel order. Next is the POKE code of the letter

was shown. The following program makes use
of most of the graphics commands that have
been examined to date.

RIK

Here's a program you could use as a basis for
teaching pre-school children. It makes use of
many of the graphics.

ALPHABET PICTURES
The program draws pictures for the first
three letters of the alphabet when one of these
is selected after the opening prompt. All
remaining letters are shown briefly before the
program passes back to the prompt. As an
exercise, you could embellish this program to
provide your own pictures and picture-making
subroutines in addition to the three provided.

A Vic 20 version of this program is possible
using the Super Expander cartridge and the
listing for this is shown also. This too may be
altered to suit your own requirements.

you wish to display—note that these are the
screen code values and not ASCII. Next is the
plot type figure which is used in the same way
as it is with other Simons' BASIC commands.
1 here indicates 'plot a dot on the screen'. The
final figure designates the screen character
size. The value can range from 1 to 8, giving
character heights from 8 pixels (value 1-
1—normal size) to a maximum of 64 pixels
(value 8—eight times normal size).

This program shows CHAR in use to display
the alphabet in the centre of the screen, which
could be used to teach a child the alphabet.

10 HIRES 0,1
20 FOR N =1 TO 26
30 CHAR 150,80,N,1,4
40 PAUSE 1
50 CHAR 150,80,N,0,4
60 NEXT: GOTO 20

Note that Line 50 is used with a plot value of 0
to wipe out the previous entry. See what
happens if it is left out (place a REM immedi-
ately after the line number).

Although the CHAR command can be used
to add letters one at a time, another
command—TEXT—is better for displaying
character strings. It takes the form:

TEXT 10,10,"ANNOTATION",1,4,4

The first pair of figures once again designate

the X and Y start position of the character
string which follows in quotes. The next
figure—l—is the familiar plot type value. The
first of the next pair of figures designates the
character height in the same way as before.
The next and final figure gives the pixel
spacing between each letter.

By using an embedded code within the
character string you can specify whether text is
to be displayed in upper case or in lower case.

For upper case, immediately after the first
quote mark press the CTRL key and A key
simultaneously. A reverse-field A is displayed.
Then complete the string with the chosen
message, closing with quote marks.

For lower case displays hold down CTRL
and B keys instead. This displays a reverse-
field B.

Upper and lower case characters may be
mixed by preceding a letter or group of letters
with the appropriate reverse-field symbol.

Both these commands will appear again
when we look at how to program graphs and
charts.

CSET is a graphics related command which
is useful for switching between uppercase/
graphics mode and upper lowercase mode. It
selects the first of these when followed by the
value 0, and the second when followed by 1.
But by following the command with the value
2 you can recall the last graphics screen which

10 HIRES 1,0:MULTI 0,5,7:COLOUR 6,2
15 BLOCK 0,3,160,80,1
20 TEXT 6,60,"ENTER A LETTER OF

TH E",2,1,7
30 TEXT 50,110,"ALPHABET",3,4,8
40 POKE 198,0
50 GET A$:1F A$ < "A" OR A$ > "Z"

THEN 50
55 TEXT 75,5,A$,3,5,7:FOR Z=1 TO

500:NEXT Z

60 A= ASC(A$) - 64:0N A GOTO 1000,
2000,3000

65 TEXT 75,5,A$,1,5,7
99 GOT050
1000 HIRES 0,1:MULTI 5,13,2:COLOUR 6,7
1005 CIRCLE 80,100,40,40,2
1010 PAINT 70,70,3
1015 FORZ =1T050STEP.3:PLOT(65 r .5)

+ RND(1)*25,80+RND(1)*40,RND(1)
*3:NEXT

1020 FOR Z=1 TO 3:ARC 75-Z,70,0,90,
10,10,30,Z: N EXT Z

1030 ARC 95,55,0,360,65,15,8,3:PAINT
95,55,1

1035 ARC 65,55,0,360,65,15,5,3:PAINT
65,55,2

1040 A$="A":B$="A ❑ P ❑ P ❑ L ❑ E":
GOTO 9000

2000 HIRES 0,1:MULTI 2,5,6:COLOUR 7,7
2010 FOR Z=43 TO 16 STEP -5:CIRCLE

80,100,50 - Z,58,3
2015 PAINT 83- (50 -4100,INT(RND(1)

*3) +1:NEXT
2020 AS="B":B$=" ❑ B ❑ A ❑ L ❑ L":

GOTO 9000
3000 HIRES 0,1:MULTI 0,1,4:COLOUR 6,13
3010 CIRCLE 80,40,13,25,3
3020 CIRCLE 80,110,20,45,2
3030 FOR Z=1T03:ARC 53- Z,140 -Z,100,

250,15,15,10,Z:NEXT
3040 ARC 66,20,0,360,90,5,15,1:PAINT

66,20,3
3050 ARC 93,20,0,360,90,5,15,1:PAINT

93,20,3
3060 PAINT 80,100,1:ARC 75,35,0,360,

90,4,3,2
3065 ARC 85,35,0,360,90,4,3,2:PAINT

80,50,1
3070 FORZ=2T03:LINE 60,60-Z*3,80,50,

Z:LINE 100,60 -Z*3,80,50,Z:NEXT
3080 CIRCLE 80,48,2,2,2
3099 A$="C":B$="1110CEALIT"
9000 TEXT 10,10,A$,3,5,8
9005 TEXT 140,10,A$,3,5,8

I 9010 TEXT 40,160,B$,1,2,10
 9099 PAUSE 5:GOTO 10

13.K.

10 GRAPHIC 0:COLOR 1,1,6,6
20 PRINT"C1Mgg !MIN ZIENTER

A LETTER OF THE"TAB(95)
"AALPHABET":POKE 198,0

30 GET A$:IF A$<"A" OR A$>"Z"
THEN30

35 PRINT"1§11"TAB(10)AS:A=ASC(A$)
-64:FOR Z=1 TO 500:NEXT Z

40 GRAPHIC 1:0N A GOSUB 1000,2000,
3000:GOTO 10

1000 COLOR 0,3,5,2:CIRCLE 1,500,500,
150,145

1005 PAINT 3,500,500
1010 DRAW 1,500,370 TO 470,260:FOR

Z=0 TO 30 STEP 3
1020 DRAW 2,485,380 TO 520 +Z,

300-Z TO 620 +Z,320:NEXT Z
1030 A$="A":B$="A ❑ P ❑ P ❑ L ❑ E":

GOSUB 9000
1099 RETURN
2000 SCNCLR:COLOR 0,2,4,6
2010 FOR Z=10 TO 250 STEP 80
2020 CIRCLE 1,500,500,Z,Z:NEXT

2022 CIRCLE2,500,300,200,200,5,48
2025 PAINT 3,500,400:PAINT 2,500,300
2027 PAINT 3,500,700:PAINT 2,500,600
2030 A$="B":B$=" ❑ B ❑ A ❑ L ❑I":

GOSUB 9000
2099 RETURN
3000 SCNCLR:COLOR6,0,3,1
3005 CIRCLE2,500,300,90,100
3010 CIRCLE2,500,600,100,200
3015 PAINT 3,500,300:PAINT3,500,600
3020 DRAW 1,400,250 TO 380,170 TO

430,240
3025 DRAW 1,600,250 TO 620,170 TO

570,240
3030 FORZ= OT08:CIRCLE 1,300,700 +Z,

100,50,0,40
3040 POINT 1,460 + SIN(Z)*10,300+

COS(Z)*10,540 + SIN (Z)*10,300 +
COS(Z)10:NEXT

3045 FOR Z=0TO3OSTEP30:DRAW 2,400,
350 + ZT0500,370T0600,350 + Z: NEXT

3050 A$="C":B$="1111110EALIT":
GOSUB 9000

3099 RETURN
9000 CHAR 1,9,A$:CHAR 17,5,B$
9010 FOR Z=1T04000:NEXT:RETURN

If you have tried the graphics routines already
covered in INPUT, you have seen how to
draw shapes on the screen, and how to add to
the scope of your pictures with colour. But
there is much more you can do using the Acorn
micros' sophisticated colour potential.

Before you can attempt to draw any sort of
graphics on the Acorn computers you first
have to put the computer into one of the
graphics modes. There are five modes you can
use—modes 0, 1, 2, 4 and 5—and each has a
different resolution and a different number of
colours. Only mode 2 supports the full range of
16 colours (or rather eight colours and eight
flashing combinations) and since this article is
about colour this is the mode to use. So type
MODE 2 and press 'RETURN S.
FOREGROUND AND BACKGROUND
The colour command for graphics is GCOL,
and it works in much the same way as the
COLOUR command for text. If you want to
specify a foreground colour just use the logical
colour number of the colour you want (see the
manual for a list of colours). For instance,
COLOUR 1 gives red text and GCOL0,2 gives
green graphics. To prove it type in those last
two commands then type:

CLS: PRINT "TEXT": DRAW 1000,1000

Note that COLOUR only works with text and
GCOL only works with graphics.

To change the background colour use the
same commands but add 128 to the colour
number. So to change the graphics back-
ground to yellow (logical colour 3) type
G CO L0,131. If you are wondering why there is
no change, try entering CLG. This clears the
graphics screen to the new background colour.
Exactly the same applies to the text screen;
COLOUR 132 followed by CLS clears the text
screen to blue. Try typing CLG followed by
CLS a few times to swop the screen colour
between yellow and blue.

SIXTEEN COLOURS
You can select any of the sixteen colour effects
for the foreground by entering a number
between 0 and 15, and any colour for the
background by entering a number from 128 to
143. Enter and RUN the next program to see
all 16 colours:

10 MODE 2
20 FOR C = 0 TO 15
30 COLOUR C
40 PRINT TAB(10) "X"
50 NEXT

If the flashing colours start to irritate you then
change the 15 in Line 20 to 7. Also try
changing MODE 2 to any of the other modes.

The size of the image will change and you'll
see fewer colours too.

The last program printed a text character
and so used the COLOUR command, but one of
the features of BBC BASIC is that you can
print text at the graphics cursor, as long as you
use VDU 5 first. Type in these three Lines to
see fewer colours too.

15 VDU 5
30 GCOLO,C
60 VDU 4

The 'X' is now treated as graphics. This is
quite useful because it means text can be
positioned very accurately by MOVEing to a
particular position rather than using PRINT
TAB. In MODE 2 you can MOVE to 160 x 256
positions whereas it is only possible to PRINT
TAB at 20 x 32. Another consequence of treat-
ing the text as graphics is that GCOL is used to
colour it and as you'll see in a moment, GCOL is
a lot more versatile than COLOUR. But to
realize the full benefits of GCOL, you must
understand the use of logical operators. Exact-
ly how they work will be described in a little
while, but if you've forgotten the meaning of
FOR or any of the other logical operators then
have a look at the article on pages 284 to 288.

The logical operators are extremely useful
in graphics programming, so let us look at

them in detail. For clarity, the example uses a
circle drawing routine, which gives a larger
image than the single character UDG. Type
NEW then enter and RUN the next program:

10 MODE 2
20 VDU 29,640;512;
30 R = 400
40 MOVE 0,0
50 GCOL 0,130:CLG
60 FOR T = 0 TO 2.01 "PI STEP PI/14
90 MOVE 0,0
110 PLOT 85,R*COS T,R*SIN T
120 NEXT

This program places the origin at the centre of
the screen (Line 20), moves the cursor there
and clears the screen to a green background
(Line 50). Lines 60 to 120 PLOT a circle in
white (the default colour).

Now enter a new line, Line 100, to change
the colour of the circle to any of the 16 colour
effects, except green (green is the background

colour, so any shape plotted in green will not
appear). Try red first:

100 GCOL 0,1

When you RUN the program, the circle appears
red—the colour specified by GCOL 0. Now see
what happens when you change Line 100 to
GCOL 1,1. The colour specified is no longer red
(colour 1), but the colour produced by ORing
red with green—the colour already on the
screen. This new colour is yellow. To make
sense of this you really have to think in binary.
Red OR green is colour 1 OR colour 2. In
binary, this is 01 OR 10—giving a result after
ORing of 11, which in decimal is 3. From your
manual, you will see that colour 3 is yellow.

Changing Line 100 to GCOL 2,1 gives a
black circle, because the '2' specifies AND. 1
AND 2 in binary is 01 AND 10, which gives the
result 0—black.

GCOL 3,1 specifies red EOR green and again
this happens to be yellow because 01 EOR 10 is
11. EOR doesn't always have the same effect as
OR of course. If the circle was first plotted in
yellow then yellow OR green is yellow (11 OR
10 is 11) but yellow EOR green is red (11 EOR
10 is 01).

The last logical operator (NOT) is specified

by GCOL 4, which has the effect of inverting
the colour already on the screen (see the
manual for a complete list of logical colours).

A SECOND IMAGE
One of the main advantages of the logical
operators is that they allow you not only to

change colours, but also to define more than
one image and to select which ones appear at
any one time. Change the program above by
deleting Line 50 and adding Lines 70, 80 and
100, then add Lines 130 to 160 to plot an
inverted triangle. Here is the whole program
with all the changes made:

10 MODE2
20 VDU 29,640;512;
30 R=400
40 MOVE 0,0
60 FOR T= 0 TO 2.01 *PI STEP PI/14
70 C=C+1
80 IF C>7 THEN C=1
90 MOVE 0,0
100 GCOL 0,C
110 PLOT 85,R*COS T,R*SIN T
120 NEXT
130 GCOL 0,3
140 MOVE —200,200
150 MOVE 0,-200
160 PLOT 85,200,200

When this program is RUN, you should see a
yellow triangle at the centre of a circle with
coloured segments. The colours of the seg-
ments are specified at Lines 70 and 80, then
called at Line 100. The triangle appears

yellow (specified at Line 130), and it blots out
the circle where they meet. This is because the
GCOL 0 statement plots the colour specified,
regardless of what was on the screen already.
Notice that if the routine to plot the triangle
occurred at the start of the program, then the
triangle would have been blotted out by the
circle, which itself is plotted with a GCOL 0.

Now try using GCOL 2 in Lines 100 and
130. Remember this ANDs colours with the
ones underneath. In this case the background
is black—colour 0. Since anything AN Ded with
0 is 0, every colour in the circle appears as
black and the triangle is black too. So you
don't see a thing!

If you set Line 100 to GCOL 0,3 and Line
130 to GCOL 2,3 you might expect to see the
coloured circle without the triangle. In fact,
both images appear. Where they overprint, the
colours are different because the yellow of the
triangle AN Ded with each colour of the circle is
sometimes a different colour. From this image
you can see that yellow AND red is red, while
yellow AND green is green, but yellow AND
blue is black, yellow AND magenta is red,
yellow AND cyan is green and yellow AND
white is yellow. Notice that the triangle ap-
pears dark, because it contains none of the
lighter shades—blue, cyan or white.

PRACTICAL USES
Although this might seem rather theoretical
and of no practical value, it is in fact a very
useful aid to creating all sorts of animated
graphics. By selecting the right logical
operator, you can obscure an image or plot it in
other colours. Treating an image in this way
can form the basis of an action-packed visual
display. Enter the next few lines and RUN the
program to see how the circle of coloured
segments can be turned into an attractive
spinning wheel.

170 FOR T=0 TO 130000
180 X=T MOD 7+1
190 FOR P=1 TO 10
200 VDU 19,P,X;0;
210 X=X+1
220 IF X>7 THEN X=1
230 NEXT
240 A= INKEY(4)
250 NEXT

Lines 170 and 180 select a value of X between
1 and 7. The FOR ... NEXT loop from Line 190
to 230 changes ten colours of the circle (Line
190) to each of these X-values. After a short
delay (Line 240), the ten colours are changed
to the next X-value, and so on. This has the
effect of shifting the colour of segments of the
circle in one direction, giving the impression of
spinning.

Here is a program that combines the use of
GCOL 0 and GCOL 3 with the spinning effect to
give an attractive display.

10 MODE 2
20 VDU23;8202;0;0;0;
30 VDU 29,640;200;
40 MOVE 0,0
50 N = 0:R =200:R2=600
60 FOR T=20*P1 TO 9.99*PI STEP —.1
70 IF T<12131 THEN GCOL 0,0:GOTO 110
80 GCOL 3,N:N= (N +1) MOD 15
90 IF T>18*PI THEN 110
100 R= R — .5:R2= R2-1.5
110 MOVE 0,0
120 PLOT 85,R2*COS T,R*SIN T
130 NEXT
140 VDU 20
150 E=130
160 P=0: C=7
170 REPEAT
180 C=C+1: IF C=9 THEN C=7
190 FOR L=1 TO 15
200 E= E— .4
210 FOR N=0 TOE
220 NEXT
230 VDU 19,L,C;0;
240 NEXT
250 IF E<5 THEN E=4.9:P= P+1: PRINT
260 UNTIL P>65
270 G=INKEY(50):GOTO 10

To give a perspective view of a 'flying saucer',
an ellipse is plotted, instead of the circle
used before. Line 50 sets the value of the first
colour and the axes of the ellipse. Line 70
ensures that the ellipse is plotted with a hole at
the centre, because it plots black on black.
Line 80 specifies that a colour between 1 and
15 should be exclusively ORed with colours on
the screen. Line 90 ensures that the circum-
ference of the ellipse is continuous—the axes
are reduced only after the first complete
revolution. Line 100 sets the rate at which the
axes decrease, and Line 120 PLOTs the colours.

The rest of the program changes logical
colours to give the effect of rotation. Line 180
selects white and flashing white/black, and
Lines 210 and 220 quickens the speed of
rotation. The final action is achieved by Line
250. From a multicoloured ring, the image
becomes a pulsating black and white vehicle.
Try deleting the IF statement from Line 180,
and change Line 255:

180 FOR C=7 TO 15
255 NEXT

or change the values to experiment with
different coloured effects. Also, change the
value of the GCOL statement at Line 80 to see
the effect of other logical operators. Some
effects are obviously better than others!

IL IA
You have already seen how to use the PSET
command to plot sine and cosine curves, and
circles on pages 241 and 242, and it has often
been used in other programs. Now is the time
to explore exactly the way PSET, and its related
functions, PRESET, PCLS, and COLOR, work.

THE PSET COMMAND
PSET simply sets the smallest unit of graphics
in any of the PMODEs to the colour you've
specified—in PMODE 4 one pixel is set, in
PMODEs 2 and 3 a pair of pixels is set, and in
PMODEs 0 and 1 four pixels are set. Don't
confuse PSET used in this way with the PSET
you've used previously with the LINE
command—see page 90.

Try typing in this program and RUNning it:

10 PMODE0,1
20 PCLS
30 SCREEN1,1
40 FOR X = 0 TO 255
50 Z= (X — 127)/10
60 Y = 95 —150"Z/(1 + Z*Z)
70 IF Y < 0 OR Y > 191 THEN 90
80 PSET (X,Y,5)
90 NEXT
100 GOT0100

The program plots a graph in the coarsest of
the two-colour modes—you could just as well
have chosen to draw in PMODE4, or PMODE2.
The graph is one of an obscure mathematical
function, chosen simply because it produces
quite a nice shape!

When using PSET you must tell the machine
where you want to set the pixel, or pixel block,
and in which colour. The colours available will
depend on the graphics mode and colour set
you've chosen.

The screen colour will be the lowest num-
bered colour in the colour set, unless you
choose to change it—see later on. In a two-
colour mode, when PSETting you must specify
the higher numbered colour or you won't see a
thing. In a four-colour mode the situation is
slightly different. This time you can choose
between the three highest numbered colours.

If you have a closer look at the program
you'll see that the Black and Buff colour set has
been specified by Line 30. Line 80 sets the
pixel at X,Y—worked out by the FOR ... in
Line 40, and the equations in Lines 50 and 60.
The last figure is the colour of the pixel—in
this case colour 5, Buff.

FOUR - COLOUR MODES
Try changing Line 10 so that it reads:

10 PMODE1,1

Now RUN the program. Don't worry if nothing
happens, because it shouldn't—yet! You are, in
fact, PSETting Buff pixels on the Buff back-
ground. You'll have to change the last figure
after PSET in Line 80 to select a different
colour before anything appears. In this colour
set you have the choice of cyan (6), magenta (7)
and orange (8).

Try changing the figure 5 in Line 80 to 6, 7
or 8. You could also try changing the colour set
by changing Line 30 so that it reads:

30 SCREEN1,0

You can now use colours numbered from 1 to
4, although 1 will PSET the same colour as the
screen. To confuse the issue slightly, if you
choose to use a figure from 5 to 8 with colour
set 0 you won't get an error message. The
machine will automatically subtract four from
the colour number.

THE PRESET COMMAND
PRESET is the reverse of PSET—broadly,
PRESET means 'switch off the pixel or pixel
block'. More particularly, it means set the
pixel, or the pixel block to the background
colour—but more about foreground and back-
ground colours later.

To see PRESET at work, RUN the program as
it stands. Next alter the program so that Line
80 reads:

80 PRESET(X,Y)

Don't RUN the program, because it'll wipe out
the shape on the high resolution screen, but
type GOTO 30 instead. You'll see each of the
pixels—or pixel blocks—disappear one-by-
one as they are changed to the background
colour.

SCREEN COLOUR
You can change the screen colour to any of
those in the chosen colour set. All you need do
is to add a number to the end of PCLS in Line
20.

With Line 30 selecting SCREEN1,1, try
using PCLS6, PCLS7 or PCLS8 in Line 20.
PCLS5 will have exactly the same effect as PCLS
because both will clear the screen to buff.

Once you have finished experimenting put
Line 20 back as it was:

20 PCLS

FOREGROUND AND BACKGROUND
The LINE command, as you saw on pages 90 to
91, uses PSET and PRESET in a different way
from the one which has just been covered.

PSET, when used with LINE, tells the com-
puter to draw in the foreground colour, whilst
PRESET tells the computer to draw in the
background colour.

When you first switch on the Dragon or
Tandy, the foreground colour is the highest
numbered colour in the colour set—see your
manual for colour numbers—and the back-
ground colour is the lowest numbered colour.

But, suppose you are in a four-colour mode
and want to draw a line in one of the other
colours in the colour set. This is no problem,
since there is a BASIC command which allows
you to specify which colour is the foreground
colour, and which the background.

Type in this program and you'll see how the
COLOR command works:

10 PMODE3,1
20 PCLS
30 SCREEN 1,0
40 FOR K =1 TO 4
50 FOR J =1 TO 4
60 COLOR K,J
70 LI N E (0,50 * K + 10"J — 55) — (255,

50* K + 10"J — 55), PSET
80 LI NE(0,50" K + 10"J — 52) — (255,

50 * K + 10"J 52), PR ESET
90 NEXT J,K
100 GOTO 100

The program draws pairs of parallel lines, one
in the foreground colour, and one in the
background colour—you can't see all of the
lines, because when either the foreground or
background colour is set to green, it's the same
as the screen colour.

The COLOR command in Line 60 provides
the variation—notice that the LINE commands
in Line 80 are not altered during the program,
except in the end coordinates.

The COLOR command works like this: the
first number after COLOR is the foreground
colour, and the second is the background. The
COLOR command must have both numbers, so
if you don't want to change both the fore-
ground and background colours you must
specify one of them as the existing value.
There's nothing to stop you having both
foreground and background colours the same
—although there's not much point in this.

Dragon and Tandy owners often get con-
fused by the words foreground and back-
ground. The background isn't necessarily the
screen colour. If you've used PCLS with no
number in your program, then the screen
colour will be the background colour. If you've
specified a number with PCLS, though, the
screen colour may not be.

Similarly, the foreground colour is almost
certainly not the colour you are drawing in.
The only graphics command which uses the
concepts of foreground and background is
LINE, and as you've seen you can choose to
draw in either the foreground or background
colours.

■ USING ACCURATE PROMPTS
■ BUILDING IN ERROR TRAPS
■ EXCLUDING INVALID VALUES
■ ERROR INDICATION
■ BOMBPROOFING

Even when a program is completely
debugged errors can still occur.
They result from the way a
program is used—or abused—and it
is these which are examined here

The key word is use. No matter how well a
program may be from a solely technical stand-
point, if it proves difficult, misleading or
confusing to use, someone, somewhere, is
going to have problems. And if anyone expe-
riences problems using a computer, the
chances are that an error of some kind will
result.

The secret really is making a program 'user
friendly' so that every stage of the program is
adequately heralded and every action by the
user is done knowingly.

This means providing plenty of screen
displays and prompts—and adequately

safeguarding both the user and the program
against simple errors.

If possible, it's wise to build into your
program protection against every conceivable
form of accidental entry. Wrong keypresses,
double presses, illegal entries, impossible
values—all spell doom for certain types of
program unless prevented. And to do this you
can incorporate several types of error checking
and input validation routines within your
programs. Many of the programs so far used in
INPUT have indeed made use of these.

PROMPTING
Accurate prompts play a large part in helping
users understand quite how to respond to the
options available when, say, presented with a
menu.

Suppose, for example, a menu displayed the
following options, typical of the program entry
point of a simple database:

1. Create new record
2. Amend existing record
3. Load file
4. Save file 	 ... and so on.

Now if you follow this with the prompt
`SELECT OPTION' or 'MAKE YOUR
CHOICE', the user is left a little in the dark
about how to go about what to do next. Does
he or she enter the option number—or type in
one or more letters of the entry?

Clearly, a much more satisfactory prompt is
`ENTER CHOICE (1 — 4)' or 'PRESS KEY
1 — 4 TO INDICATE CHOICE'.

Similarly, in prompts which require a
simple 'yes' or 'no' response, indicate this in
the display. So rather than use something like
`ANOTHER GO?'—where 'yes' could be
indicated by a non-specific keypress, or by
pressing the joystick 'fire' button, or by press-
ing Y—spell out the options. 'PRESS FIRE

BUTTON FOR ANOTHER GAME' and
`ANOTHER GO (YEN)?' are both much more
direct and so give clear direction on how to
proceed.

Even the temporarily confusing 'PRESS
ANY KEY TO CONTINUE' prompt is
better in this respect. But an improvement on
this much-used favourite is to specify a key—
just in case the user decides to press something
like I STOP I, 'BREAK I or I ESCAPE) and so possibly
exit the program! There can be no confusion
over a prompt like 'PRESS C TO
CONTINUE'.

On some computers, the required keypress
can be highlighted by printing an inverse of
the character in the prompt—often a very neat
alternative.

Regardless of the types of prompt and
keystroke options, it is good programming
sense to disable any key which would cause the
program to halt, and use routines which
exclude all 'impossible' INPUTs (as shown on)
page 377). To recap, for a simple 'yes or no'
option you could use something like:

90 LET A$ =1NKEY$
92 IF A$="" THEN GOTO 90
95 IF A$< >"Y" AND A$< >"N" THEN

GOTO 90

90 GET A$
95 IF A$< >"Y" AND A$< >"N" THEN 90

90 A$=GET$
95 IF A$< >"Y" AND A$< >"N" THEN 90

90 A$ =1NKEY$
95 IF A$ < >"Y" AND A$ < >"N" THEN 90

Much more sophisticated routines can be used
to restrict input to certain value ranges (see
page 319).

Another way of lessening the burden on the
user is to restrict the actual amount of inform-
ation which has to be input at any one given
instance. If a single keypress can do the job,
use it! And to avoid any confusion, use the
same type of prompt/response throughout a
menu-driven program. So if selection from the
opening menu is made by keying in a single
number, try to use the same system for all
other menus which follow.

While on this point, use the same conven-
tions for each and every menu or options list. If
the third option is 'SAVE' on one menu but
`QUIT' on another, someone may not be too
happy with your program in the future.. .

Where data input is required, the same rule
can apply, and particularly when a lengthy
sequence is involved. A multiple INPUT
prompt is fine where data is restricted to a set
and very simple pattern—a name and address
file for example, where four lines of address
and a telephone number invariably follow the
name.

But it pays to take greater care with any-
thing more complex such as a customer re-
cords file. Here there's a fair likelihood the
number of entries will differ from record to
record, and some fields may even be left blank.

You can limit errors by splitting the re-
quired inputs into logical groups, if not singly.
Thus you could still have a single prompt for a
name and address, and then prompt singly for
specific details thereafterwards.

Arrange for the prompts to come up singly,
or in a different colour, or (at least) well spaced
from the previous one. Clearing the screen
after each screenful of prompts does seem
much easier on the eye than one which simply
scrolls ever upwards.

One other point here: with some programs
an unusual input may call into use its own
particular subroutine. In a datafile, for in-
stance, additional items of information may be
required for certain types of entry. Now if the
user, through reasonable familiarity with the
standard sequence of prompts, takes little
notice of the new 'branch' of prompts—
thinking nothing has changed—all sorts of
errors could occur.

Error trapping routines are essential in all
cases such as this—but it makes sense to warn
the user in some way that the input require-
ments have changed. A simple flashing display
or reversal of the prompt is usually quite
sufficient. Or you could incorporate some sort
of audible warning such as a beep, if your
computer has this facility.

ERROR TRAPPING
The easiest way to prevent errors from being
`absorbed' by a program is to give the user the
final option of accepting or rejecting what has
already been entered. This can be done using a
routine prompted by something like 'ARE
ENTRIES CORRECT? YEN'. Pressing N
then simply restarts the input routine, whereas
Y acts on the information present. But this is
really necessary only on lengthy input
routines.

If you decide to incorporate an entry ac-
ceptance routine within a program, combine
all the answers in a single group if you can.
This is easier to read and therefore much
better than repeating the entire prompt and
answer sequence on an individual basis.

But although entry acceptance routines
provide one simple means of avoiding errors,
programs have to be protected against incor-
rect entries.

For instance, can letters as well as numbers
be entered where only letters or numbers are
allowable? Always anticipate problems such as
this when building up input routines in your
own programs.

LENGTH LIMITS
In most datafile programs the length of input
has to conform to the requirements of the
program. A label program, for instance, must
have its entries restricted to the physical limits
of a label. After all, there's no point being able
to enter an address line in excess of, say, 25 or
30 characters if there's no way entries of this
length can be used because they will not fit on
to the label.

You can use a prompt or suggest the real
limit of entries by using indicators such as
reverse characters or any other visual device to
suggest the limits which are in effect.

Even so, additional programming must be
provided to invalidate entries which are too
long. In some cases, it may be preferable
simply to truncate line entries at the correct
length, and then rely on the entry acceptance
routine to enter or reject this. But usually it's
better to restart the input sequence at the point
where the error occurred, providing a suitable
error message such as 'ENTRY TOO LONG'
followed by the prompt 'PLEASE RE-
ENTER', or whatever you like.

One of the other main reasons for including
entry length limits within a program such as a
datafile is to conserve memory. After all,
there's little point allowing 28 character spaces
for a postcode entry if the maximum used is
never more than eight. Trim back field lengths
as far as possible to save memory and get the
most from your datafiles.

INVALID VALUES
Setting limits is important for other reasons,
particularly in programs which make use of
numerical input for further calculations. For
example, suppose the computer asks for three
numbers (or calls in these numbers from
memory), and divides the sum of the first two
by the third. An earlier slip of a finger could
enter a 0 rather than a 9 for the third. Or
perhaps, as a result of another calculation
within the computer, the value 0 is assigned to
the third variable.

Unless the program is suitably protected the
result is a 'division by zero' error message and
an abrupt end to the program.

In a case such as this the protection needed
is minimal as far as keyboard input is
concerned—a simple keycheck routine can be
used to restrict the range of acceptable values
(see pages 284-288).

But for 'internal' calculations which could
conceivably return a zero for use in further
calculations specific error traps have to be
used. Here it is a case of anticipating the worst
and building into the program. a value-
checking routine using relational operators
(see page 284). Something like this could be
added:

IF A = 0 THEN GOTO 10000

Line 10000 would then be the start of a
routine that could either adjust the value to
something other than 0 (but which was still
acceptable to the program)—or advise the user
that an invalid calculation was about to take
place. In the latter instance the program could
be redirected to a suitable input routine so an
alternative value can be entered.

A particular range of values can be checked
using something like the now familiar:

IF N >100 OR N<1 THEN

This would typically return to the beginning of
the input routine in the event of a value that is
out of range.

In any case where there is a risk of an invalid
input error under the direct control of the
program user, use suitable prompts to suggest
the available range of values and—if a mistake
occurs—provide suitable error messages to let
the user know why. These can be contained in
a special subroutine accessed when, and if,
necessary (see below).

CLEAR BUFFER
Certain computers—the Acorns and Commo-
dores, for example—have to make use of a
temporary storage area for keyboard/input
entries. They do this using what is called a
keyboard, or input, buffer. Errors can be

introduced if the wrong characters are entered
by accident or earlier keypresses are still stored
in the buffer.

For instance, in a program accepting a
sequence of single key entries, pressing the key
twice sends a second and probably unwanted
character to the keyboard buffer ready for
processing. The first input prompt accepts the
first, and the second input prompt barely has
time to display before being assigned the
second keypress value and the program pro-
ceeds onwards.

To avoid situations such as this it is advis-
able to include this precautionary additional
statement just before an input sequence:

ECK

POKE 198,0

*FX15,1

This completely clears the keyboard buffer
prior to the expected input sequence which
should follow immediately.

ERROR INDICATION
By providing the user with clear instructions
on what to do when confronted with an input
sequence, a great proportion of likely errors
are eliminated at source. When errors do
occur, however, clear indication of the pro-
blem can help to reduce the chances of
repeating them.

What is needed here is a set of purpose-
made error messages, and not the computer's
system error messages. These can be defined
and built into a program using a special
subroutine used when a problem arises.

Typical uses of these are to indicate cal-
culated or input figures which exceed the
acceptable limits, duplication of names in a key
field, incorrect input length and incorrect
input type. In fact, imagine all the problems
likely to occur in a program—and you can
provide the error messages to go with them!

By using an array and variable arrangement
you can define the number of error messages
required and allow the program to adjust the
value of the variable according to the errors.

The array for these error messages would be
DI Mensioned early in the program as part of
the initialization procedure. This statement
could be adjusted from time to time to include
new potential errors that are discovered as the
program is developed. So if you plan to use a
set of nine program error messages, use a
suitable DIM statement early in the program,
typically like this:

10 DIM e$(9,20): FOR z=1 TO 9: READ
e$(z): NEXT z

20 DATA "Entry too long!", "Typing error!"
22 DATA "Wrong password!", "No data!"
24 DATA "Re-enter Data!", "Don't touch!"
26 DATA "Press (y)es or (n)o!",

"Numbers only!","Letters only!"

10 DIM EM$(9):FOR Z=1 TO 9:
READ EM$(Z):NEXT Z

20 DATA "ENTRY TOO LONG !",
"TYPING ERROR !"

22 DATA "WRONG PASSWORD !",
"NO DATA !"

24 DATA "RE-ENTER DATA !",
"DON'T TOUCH !"

26 DATA "PRESS (Y)ES OR (N)0 !",
"NUMBERS ONLY !","LETTERS ONLY !"

Of course, you can define your own messages
to suit the program conditions. Then, later on
in the program, at each input point, the
following entry check could be made:
4.11.41104

1000 LET a$ ="": LET em= 0: INPUT a$
1010 IF LEN a$>25 THEN LET em= 1

Line 1010 here is optional and could be
replaced by a number of alternatives depend-
ing on the program. For example:

1010 IF a$ < > "credit" THEN LET em = 3
1010 IF a$ = "5" OR a$ = "9" THEN LET

em =4
1010 IF a$="" THEN LET em=5
1010 IF a$ =" El" THEN LET em = 6
1010 IF a$< >"y" AND a$< >"n" THEN

LET em= 7
1010 IF a$ <"0" OR a$>"9" THEN LET

em =8
1010 IF a$ < "a" OR a$ >"z" THEN LET

em =9
1010 FOR z =1 TO LEN a$: IF a$(z) = "0"

THEN LET em —2
1015 NEXT z

1000 EM=0:INPUT A$
1010 IF LEN(A$)> 25 THEN EM =1

Line 1010 here is optional and could be
replaced with a number of alternatives de-
pending upon the program. Some might be,
for example: (Note that the fourth alternative
does not work on the Commodores or Acorns
as you cannot INPUT a space.)

1010 IF A$ < > "CREDIT" THEN EM = 3
1010 IF A$ = "5" OR A$ = "9" THEN EM =4
1010 IF A$ = "" THEN EM = 5
1010 IF A$=" ❑ " THEN EM = 6
1010 IF A$ < > "Y" AND A$ < > "N" THEN

EM =7
1010 IF A$ < "0" OR A$> "9" THEN EM = 8
1010 IF A$ < "A" OR A$> "Z"

THEN EM = 9
1010 FOR Z=1 TO LEN(A$):IF

M1D$(A$,Z,1) = "0" THEN EM = 2
1015 NEXT Z

All the alternative keypress check lines here
have the same line number as only one of these
would be tied to a particular input routine.
The exception is the last example which has to
have a NEXT on a following line (1015, here).

When a keypress test reveals an error,
variable EM adopts a particular value which
relates to a specific error message previously
defined as part of array EM.

The first tests for entries greater than 25
characters, the second insists on the correct
password. The third, typical of what might be
used after a menu selection input, points out
that no data is available if you choose options 5
and 9. Test four asks you to re-enter data if a
null entry is made. The fifth responds cheekily
if you happen to press the space bar. The sixth
is a variation of the keypress test commonly
seen after a yes/no prompt. The next two test

that numbers only or letters only are entered,
and the last tests to see that an 0 has not crept
into the program in place of a 0.

The program would then proceed, via a
subroutine, to a message display routine which
could take the form:

2000 IF EM > 0 THEN PRINT TAB 6;e$(em)

NE
2000 IF EM >0 THEN PRINT EM$(EM)

Typically the program would then return to
the point where the incorrect input was made.

BOMBPROOFING
Earlier, we looked at how the usual system of
keypress checks can be carried out to validate
single key entries after, say, a menu. While this
protects the program from incorrect entries,
further refinements are necessary to provide
complete protection for RUNning programs.

Imagine, for example, a program written for
use by young children. Ideally, this would
require them to press only one of perhaps two
or three keys in order to progress through the
program. All the other numeric and letter keys
can be invalidated easily enough. But what
about the control keys such as I RUN/STOP land
'RESTORE', 'BREAK or 'ESCAPE'? On the Spec-
trum you have to press two keys simulta-
neously to I BREAKI—virtually impossible to do
by accident—but additional program
safeguards are required by the other machines:

Several POKEs are available which can be used

to disable certain of the more sensitive keys on
the Commodores. For the 64, IRUN/STOP can
be disabled by using POKE 808,239. IRUN/STOP
and 'RESTORE can be disabled using POKE
808,251. Both are enabled using POKE
808,237.

For the Vic 20 I RUN/STOPI and RESTORE' are
disabled using POKE 808,128—and enabled
using POKE 808,112.

On the Acorn computers, 'BREAK is the most
critical of these, effectively resetting the com-
puter when pressed. I ESCAPEI stops a program
RUNning, displaying the escape message and
the line number at the point where the
program was interrupted.

You would need to use a machine code
routine to disable the I BREAK I key entirely but
you can make it perform an OLD and RUN by
using:

*KEY10OLDI MRUNI M

The OSBYTE call *FX229,1 can be used on
all but the earliest BBC models to generate an
ASCII code from the 'ESCAPE' key instead of
interrupting a BASIC program. * FX229,0 rest-
ores the 'ESCAPE function.

1U:
Pressing the 'BREAK' key on the Dragon key-
board stops a program RUNning but there is no
easy way of disabling it without using the
following POKE routine:

10 FOR K = 415 TO 410 STEP-1: READ A:
POKE K,A: NEXT K

20 DATA 228,237,4,203,228,236

If you find dealing with hex a bore,
why not get your Spectrum to
translate your assembly language
listings into machine code for you?
It'll even work out the jumps

Hand assembling can be a tedious business.
Even if you know all the opcodes by heart and
are familiar with the various addressing modes,
translating a long assembly language program
into machine code and then feeding it into
your computer using your machine code moni-
tor can be a laborious task.

But computers are particularly good at such
exacting and repetitive work, so why not get
your computer to do the translation for you?
And the same program can be used to POKE the
resulting machine code into memory at the
same time.

The following program is an assembler for
the 48K Spectrum. Commodore 64, Dragon
and Tandy versions follow in later chapters—
the BBC Micro and the Electron do not need
one, they have an assembler built in. And there
is not enough room in memory to run similar
assembler programs on the 16K Spectrum, the
ZX81 or the unexpanded Vic 20. To make
these programs suitable for publication they
had to be written in BASIC, so they are not as
fast as the machine code assemblers which are
available commercially.

But they do work and will be able to
assemble assembly language programs you will
find in the books for your machine as well as
the ones published in INPUT. You would be
well advised to go and make yourself a cup of
coffee while the Spectrum assembler is getting
to grips with a long program, though. It may
take some time.

THE ASSEMBLER
5000 DIM k$(110,4): DIM k(110):

DIM m(110): LET h$ = "0123456789
ABCDEF": LET b$="": LET
g$ = "0123456789abcder

5010 DIM t$(100,24): DIM r(100): DIM
z$(100,6): DIM z(100)

5020 DIM b(9): LET b(1)=1: FOR i =2 TO 9:
LET b(i)= b(i —1) + b(i —1): NEXT i

5030 DIM r$(8,4,4): FOR j =1 TO 4: FOR
i=1 TO 8: READ r$ (i,j): NEXT i: NEXT j

5040 DATA "0","1","2","3","4","5",
(6)) , 4 CT 5 , 4 t nz)/ , ‘ (z,f , " nc'' « c f) , 4 po ll ,

 “pe53 , tt p 5) , 4 rn /) , <CO5, , 8 , ,416,, ,

"24","32","40","48","56","h1",

"ix","iy","bc","de","h1","sp"," "
5050 DIM s$(8,2,4): DIM t(18): . DIM

u$(18,10): FOR j =1 TO 2: FOR i =1 TO
8/j: READ s$(i,j): NEXT i: NEXT j: FOR j =1
TO 18: READ t(j),u$(j): NEXT j

5060 DATA "b","c","d","e","h","I",
"(h1)","a","bc","de","h1","sp",
235,"de",8,"af",227,"(sp)",
60742,"0",60758,"1",60766,"2",
233,"(h1)",56809,"(ix)",65001,
"(iy)",10,"(bc)",26," (de)",
60767,"r",2," (bc)",18," (de)",
60751,"r",249,"sp",60743,"1",
60759,"i"

5070 DEF FN b(x,i) = INT (x/b(i + 1))
—INT (x/b(i +2)) . 2

5080 DEF FN x(x,i)=x—b(i+2)*FN
b(x,i)+ b(i +1)

5090 DEF FN j(x,i)= INT x—b(i+1) .
 INT (x/b(i+1))

5100 DEF FN e(i$,j$) = (i$=j$(TO LEN (i$)))
5110 FOR i=1 TO 110: READ k$(i),

k(i),m(i): IF NOT FN e(" ",k$(0)
THEN NEXT i

5120 DATA "Id",10,10,"Id",26,10,"Id",
60767,10,"Id",60759,10,"1d",2,138,
"Id",18,138,"Id",60751,138,"Id",60743,
138,"Id",64,22,"Id",50,202,"Id",58,74,
"Id",249,139,"Id",34,195,"Id",42,67,
"Id",60779,197,"Id",60771,199,
"Id",97,165,"Id",64,54

5130 DATA "adc",136,50,"adc",
60746,3,"add',128,50,"add",9,
149,"and",160,48,"or",176,48,
"xor",168,48,"nop",0,0,"sub",
144,48,"sbc",152,50,"sbc",60738,
3,"cp",184,48,"jp",130,45,"ip",
233,9,"jp",56809,9,"jp",65001,
9,"jp",131,49,"jr",96,45,"jr", 88,41

5140 DATA "call",132,45,"call",
141,41,"ret",201,0,"djnz",74,
40,"dec",11,17,"dec",5,16,"inc",
3,17,"inc",4,16,"push",197,17,
"pop",193,17,"di",243,0,"ei",
251,0,"halt",118,0,"ex",235,139,
"ex",8,15,"ex",227,143,"exx", 217,0

5150 DATA "rst",199,132,"rts",
192,5,"bit",52032,20,"defb",
— 256,40,"ccf",63,0,"scf",55,0,
"cp1",47,0,"cpd",60841,0,"cpdr",
60857,0,"cpi",60833,0,"cpir",

60849,0,"daa",39,0,"im",60742,
8,"im",60758,8,"im",60766,8

5160 DATA "in",60736,130,"in",
149,42,"ind",60848,0,"indr",
60810,0,"ini",60840,0,"Idd",
60840,0,"Iddr",60856,0,"Idi",
60832,0,"Idir",60848,0,"neg",
60740,0,"otdr",60859,0,"otir",
60851,0,"out",60737,2,"out",
141,170,"outd",60843,0,"outi",
60835,0

5170 DATA "res",52096,20,"reti",
60749,0,"retn",60741,0,"r1",
51984,64,"rla",23,0,"rIc",

■ 	 TRANSLATING
ASSEMBLY LANGUAGE

INTO MACHINE CODE
■ 	WORKING OUT JUMPS

AND BRANCHES

■ COPING WITH LABELS
■ ASSIGNING SPACE FOR

DATA AND VARIABLES
■ POKEING IN THE

HEXADECIMAL

51968,16,"rIca",7,0,"rld",60783,
0,"rr",51992,64,"rra",31,0,
"rrc",51976,16,"rrca",15,0,
"rrd",60775,0

5180 DATA "set",52160,20,"sla",
52000,16,"sra",52008,16,"srl",
52024,16,"defw", — 256,41

5190 DATA "*",0,0: LET ii = i: LET k(110)= ii
5200 LET b= 0: LET ba= PEEK 23635+256*

PEEK 23636+4: LET n=1
5210 LET cc =1: IF PEEK ba< >234 THEN

LET n= n-1: GOTO 5250
5220 LET cc= cc +1: LET ba=ba +1: IF PEEK

ba =13 THEN LET ba= ba +5:

LET n = n +1: GOTO 5210
5230 LET t$(n,cc) = CHR$ PEEK ba
5240 GOTO 5220
5250 FOR g =1 TO 100: LET r(g)=g —1:

NEXT g: LET fh =100
5300 LET k0 =0: LET k9 = 99: LET p0= 0:

LET vv= 0
5310 LET k= kO: LET p= p0
5320 GOSUB 8000
5330 GOSUB 7000: LET o$ = i$: IF

o$(1)="*" THEN PRINT o$;:
GOTO 5320

5340 IF o$ = "end" THEN PRINT
❑ end last addr ❑ ";p —1

5350 IF o$="end" THEN LET p0 = p:GOTO
5370 IF o$ < > "org" THEN GOTO

5400
5380 GOSUB 7000: LET s=0: IF

i$(1)="*" THEN LET s= p: LET i$=
i$(2 TO)

5390 LET p= VAL i$ +s: PRINT
"1=1 ❑ ❑ ❑ org111";p;: GOTO 5320

5400 IF p=0 THEN PRINT "(you forgot org)":
LET p= 50000

5410 LET p$=o$+"!": FOR i=1 +18*
(o$< > "Id") TO 110: IF o$< =k$(i)
AND p$ > k$(i) THEN GOTO 5500

5420 NEXT i: PRINT o$

5430 IF i$(1)="." THEN LET i$ = i$
(2 TO)

5440 GOSUB 9000:LET gg = r(g)
5450 IF gg < =100 THEN LET s=SGN

z(gg): LET b= INT (ABS z(gg)/
65536): LET r = ABS z(gg)—b'65536:
LET q= PEEK r+256*PEEK (r + 1):
POKE r,FN j(p*s+q,8): PRINT
"0 poking ❑ ";r;" ❑ with0";FN
j(rs+q,8): IF b THEN POKE
(r+1),FN j((p*s+q)/256,8):
PRINT " ❑ poking ❑ ";r +1;" ❑ with ❑ ";
FN j((rs+q)/256,8)

5460 IF gg < =100 THEN LET gh = r(gg): LET
r(gg) = fh: LET fh = gg: LET gg = gh: GOTO
5450

5470 IF i$="" THEN LET r(g) = p + 100:
GOTO 5330

5480 PRINT "0 (This line not recognised)"
5490 GOTO 5420
5500 LET z = 0: LET r = 0: LET e = 0: PRINT

"1111110111";o$;
5510 LET op= k(i): IF m(i)= 0 THEN GOTO

6090
5520 GOSUB 7000: LET a$ = i$: PRINT

" ❑ ";a$;
5530 LET m= m(i): LET op= k(i): LET b= FN

b(m,0): LET b7= b + 2*FN b(m,7) + 1: LET
z= 0: IF FN j(m,3) <2 THEN LET c$ =a$:
GOTO 5720

5540 FOR j = 1 TO LEN a$: IF a$(j) = ","
THEN GOTO 5580

5550 NEXTj: IF o$="rst" OR o$ = "rts"
THEN GOTO 5580

5560 IF FN e(o$,k$(i+1)) THEN LET i= i +1:
GOTO 5530

5570 PRINT "0 (two operands expected)":
GOTO 5320

5580 LET b$=a$(TO j —1): LET
c$ =a$6 + 1 TO)

5590 IF FN b(m,2) THEN GOTO 5650
5600 IF FN b(m,7) THEN LET d$=c$: LET

c$= b$: LET b$=d$
5610 IF b$="ahl"(b+1 TO b+b+1) THEN

GOTO 5720
5620 IF b$="(c)" AND (o$ = "in" OR

o$="out") THEN GOTO 5720
5630 IF (FN e(o$,k$(i +1))) AND (FN

j(m(i+1),3)> =2) THEN LET i=i +1:
GOTO 5530

5640 PRINT "(first operand a or hl expected)":
GOTO 5320

5650 IF FN b(m,1) THEN GOTO 5690
5660 LET e$ = (b$ + "0 0 0") (TO 4):

FOR j =1 TO 8: IF e$=r$0,b7)
THEN LET op= op + 8*(j —1)•(b7 <4) +
16'(j— 6)*(b7 = 4)*(j > 3): LET z=
(j — 1)*(b7 =4)•(j < = 3): GOTO 5710

5670 NEXTj: IF p$ > k$(i +1) AND (FN
j(m(i+1),3)> =2) THEN LET i= i +1:
GOTO 5530

5680 PRINT "(first operand bit or flag reqd)":
GOTO 5320

5690 IF FN b(m,7) THEN LET d$=c$: LET
c$ = b$: LET b$ = d$: GOTO 5660

5700 LET x=8: GOSUB 5750: IF e THEN
GOTO 5730

5710 IF c$="" THEN GOTO 6090
5720 LET x=1 +15*b+7*(op< =6 AND

op> =4 OR. b$="(c)"): LET b$=c$:
GOSUB 5750: IF NOT e THEN GOTO 6090

5730 IF e=2 OR p$>k$(i+1) AND FN
j(m(i+1),3)= FN j(FN x(m,0),3) THEN LET
e= 0: LET i = i +1: GOTO 5530

5740 GOTO 5320
5750 LET r=0: IF FN b(m,4) AND

FN e("("(TO NOT b),b$) THEN
LET z2 = FN e("ix",b$(2 — b TO)+
"0")+2*FN e("iy",b$(2—b TO)+
"0"): IF z2 THEN LET z=z2: LET
e$=b$(TO LEN b$ — NOT b): LET
b$="(h1)"(1+ b TO 4— b): LET
f$ = "0" + e$(4 — b TO)

5760 IF FN b(m,3) THEN GOTO
5790

5770 LET e$= (b$ + "CIO 0") (TO 4):
FOR j=1 TO 8/(b+1): IF e$=s$(j,b+1)
THEN LET op=op+ (j —1)'x: RETURN

5780 GOTO 5810
5790 LET j2 = 9 + 9' (o$ = "Id"): FOR

j =j2 —8 TO j2: IF k(i) < >1) THEN
GOTO 5810

5800 IF FN e(b$,u$(j)) THEN RETURN
5810 NEXT j: IF b$= "af" THEN IF FN

e("p",o$) THEN LET op= op + 48:
RETURN

5820 IF FN b(m,6) AND FN e("(",b$) THEN
LET b$= b$(2 TO LEN b$ —1): GOTO
5860

5830 IF FN b(m,5) THEN LET op= FN
x(op + 6*NOT b,6): GOTO 5860

5840 IF p$ > k$(i +1) THEN LET e=2:
RETURN

5850 PRINT "(cannot match operand to op)":
LET e=1: RETURN

5860 LET r = 65536
5870 LET s=1
5880 IF b$="" THEN GOTO 6080
5890 LET x$= b$(1): LET d$= b$(2 TO): IF

x$=""" THEN LET r=r+ ifs: LET
b$ = d$: GOTO 5870

5900 IF x$="+" THEN LET b$=d$: GOTO
5880

5910 IF x$="—" THEN LET b$=d$: LET
s= — s: GOTO 5880

5920 IF x$ = "' THEN LET r= r +CODE
dr s: LET b$=d$(2 TO): GOTO 5870

5930 LET q= 0: IF x$ < >"%" OR d$ < "0"
OR d$> ="2" THEN GOTO 5960

5940 IF d$> = "0" AND d$ < "2" THEN LET
q=q*2+ CODE d$-48: LET d$=d$(2
TO): GOTO 5940

5950 LET r= r + q*s: LET b$=d$: GOTO 5870
5960 IF x$ < >"$" OR d$ < "0" OR

d$> ="g" THEN GOTO 6000
5970 LET x$= CHR$ CODE d$: FOR g = 0 TO

15: IF x$< >h$(g+1) AND
x$< > g$(g +1) THEN GOTO 5990

5980 LET q=q*16+g: LET d$=d$(2 TO):
GOTO 5970

5990 NEXT g: LET r= r+ q*s: LET b$=d$:
GOTO 5870

6000 IF x$ <"a" OR x$ > "z" THEN GOTO
6040

6010 LET i$= b$: GOSUB 9000: IF i$< >""
THEN GOSUB 9400

6020 IF r(g) < >23000 AND r(g)> 100 THEN
LET r=r+ (r(g)-100)*s: LET b$=i$:
GOTO 5870

6030 IF r(g)= 23000 OR r(g) < =100
THEN LET gh = r(fh): LET r(fh) =
r(g): LET r(g) = fh: LET fh = gh:

LET z(r(g)) = (p+SGN op+ (ABS
op > 255) +2*(z> 0) + 65536* ((b OR
FN b(m,6)) AND o$ < >"jr"))*s:
LET b$ = i$: GOTO 5870

6040 IF x$ < "0" OR x$ > "9" THEN LET
r= 0: GOTO 6070

6050 IF b$> = "0" AND b$ <":" THEN LET
q = q*10 + CODE b$-48: LET b$=b$(2
TO): GOTO 6050

6060 LET r= r + 	GOTO 5870
6070 PRINT "(address not understood)"
6080 LET r=r— (p+2)*(o$ "djnz" OR

o$="jr"): RETURN
6090 PRINT TAB 16;: LET by= p/256: GOSUB

6190: LET by= p: GOSUB 6190: GOSUB
6160

6100 IF z THEN LET by=189+z*32: GOSUB
6180: GOSUB 6160

6110 IF op> =0 THEN LET by= op/256:
GOSUB 6170: GOSUB 6150: LET by= op:
GOSUB 6180: GOSUB 6150

6120 IF r=0 THEN GOTO 5320
6130 GOSUB 6160: LET by= r: GOSUB 6180:

IF (b OR FN b(m,6)) AND o$< > "jr"
THEN LET by= r/256: GOSUB 6180

6140 GOTO 5320
6150 IF z AND INT by AND NOT b THEN

GOSUB 6160: LET by =VAL f$: GOSUB
6180: LET z= 0

6160 PRINT "111";: RETURN
6170 IF INT by < = 0 THEN RETURN
6180 LET by= FN j(by,8): POKE p,by: LET

p = p + 1

Tracing bugs in long programs
Keying in long programs like this one is
very difficult to do without introducing
bugs. The most common fault is to leave
out a piece of DATA. If you get an 'OUT OF
DATA' error message, check your DATA
statements. Even a missing comma will
cause problems. If your assembler does not
work first time, don't despair. If you can't
spot an obvious error, INPUT will be
publishing a Spectrum trace to help you
find the bugs.

The trace program prints on the screen
the number of the line of BASIC being
executed, as it is being executed. And
INPUT's trace gives the number of the
statement being executed in that line as
well. Using these facilities in conjunction
with the published program, spotting
errors is much easier.

6190 LET by= FN j(by,8): PRINT h$(1 + INT
(by/16));h$(FN j(by,4) + 1);

6200 RETURN
7000 IF k>n THEN LET i$ = "end": RETURN
7010 LET k1= k9 +1: IF k9> = LEN t$(k)

THEN LET i$="/missing/": RETURN
7020 LET k9=k1: IF t$(k,k1)= "LI" THEN

GOTO 7010
7030 IF k9> LEN t$(k) THEN LET i$ = t$(k)

(k1 TO): RETURN
7040 IF t$(k,k9)< > "0" THEN LET

k9= k9 +1: GOTO 7030
7050 LET i$=t$(k) (k1 TO k9-1): RETURN
8000 IF k>0 THEN IF t$(k) (k9 TO) > t$(99)

THEN PRINT t$(k) (k9 TO);
8010 POKE 23692,0: LET k= k +1: LET

k9=0
8020 PRINT : RETURN
9000 LET x$=`'
9010 IF i$ < "a" OR i$ >"z" THEN GOTO

9030
9020 LET x$=x$+1$(1): LET i$ = i$(2 TO):

GOTO 9010
9030 IF i$< >"" THEN RETURN
9400 FOR g=1 TO vv: IF FN e(x$,z$(g))

THEN RETURN
9410 NEXT g: LET vv= vv + 1: LET

z$(vv) = x$: LET g = vv: LET r(g) = 23000
9420 RETURN

HOW IT WORKS
You will notice that the assembler program
starts on Line 5000. This is to leave room for
your assembly language programs which must
be entered as REM statements in BASIC lines.

Each assembly language instruction must
be entered on a separate line, in a separate REM
statement, in ordinary lowercase letters, not
capitals.

At some point before you assemble the
program you must CLEAR an area for your
machine code to go into. The first line of your
assembly language program should read some-
thing like:

10 REM org 32000

The 32000 is the memory location where the
machine code program will begin and it
should, of course, be above the place you have
CLEARed to.

If you forget to specify an org, or origin, the
assembler will default to 50000 and it will put
your program there.

Standard Z80 mnemonics are used with
one exception, conditional returns. At the end
of Z80 assembly language subroutines the
mnemonic ret will return you to the main body
of the machine code program. ret will work on
this assembler.

But sometimes you want a conditional
return, for example, ret nz. This means, return

if non-zero. With this assembler, you should
use the syntax rts nz instead. And rts should be
used instead of ret in any conditional returns,
that is any return which has letters after the
ret. For an unconditional return, that is an ret
with nothing following, the ret is retained.

If hex numbers are used they must be
preceded by a $ sign. Binary numbers need a %
sign in front. And if there is no sign in front of
a number the assembler will take it as decimal.
Labels are any word that is not a command.
Avoid the use of anything too similar and don't
use numbers.

Assembly language programs must end
with REM end, so the assembler knows when to
stop.

Once you have keyed in your assembly
language program all you have to do is RUN the
program and your assembly language
program—the source code—with its machine
code equivalent—the object code—is listed on
the screen. At the same time, the object code is
POKEd into memory.

If at this point you feel that you may have

made a mistake in one of the lines, you can LIST
the program and edit the assembly language in
the normal way.

Once all the machine code is assembled, the
end address of the machine code routine is
displayed.

To execute the program you must use one of
instructions used for running machine code
programs (see page 282) like RANDOMIZE USR.

To SAVE the object code you should key in:

SAVE "name" CODE start address, no. of bytes

Name is the name you want to give to the
routines. It must be in quotation marks. The
keyword CODE tells the computer that it
should save the program byte-by-byte, rather
than a BASIC program that can be relocated
anywhere in memory. Start address is the
origin of the machine code program. And you
can work out the number of bytes by subtract-
ing the origin from the end address, and
adding 1.

The assembler and the source code can be
SAVEd using the normal SAVE routine (page 23).

What happens if there is a bug in
my assembly language program?
The assembler program given here has
built-in error messages. The way that
assembly language is structured means
that the assembler can spot some of your
errors. For example, some operations
only work with the A or HL registers. If
you try and perform them with any of
the others, the assembler will tell you:
`first operand a or hl expected'.

If you have made a typing error and
keyed in something that is not recognized
as an operator, you will be told: 'This
line is not recognized'. Two operands
expected' means you have left out a vital
piece of data after the command. 'Cannot
match operand to op' means the data is of
the wrong sort for the command. And
`first operand bit or flag required'
means wrong data given with a
branch or bit command.

TESTING
To test your assembler try keying in the
assembly language right scrolling program
given on page 323. Whether you hand as-
semble that program or feed it into your
assembler, the machine code should read:

11 FF 57 21 FE 57 06 CO C5 1A 01 1F 00
ED B8 12 2B 1B C1 10 F3 C9

Note that the assembly language must be
keyed in in ordinary lower case letters, not
capitals otherwise the assembler will not re-
cognise them. Now try the routine out and
test that it works.

a
INPUT is not carrying a ZX81 assembler
because it is not possible to write one in
BASIC that could be used for the programs
that will be covered in following chapters. If
you are a ZX81 owner and are interested in
machine code, it is suggested that you buy one
of the machine code assemblers available
commercially.

If you have one try it out on the right
scrolling program on page 325. Whether you
use an assembler or hand assemble that
program you should get:

2A OC 40 11 16 03 19 54 5D 13 06 18 C5
1A01 1F 00 ED BB 12 2B 1B 1B C1 10
F1 C9

CUMULATIVE INDEX

An interim index will be published each week. There will be a complete index in the last issue of INPUT.

A
Addressing
Adventure games

mapping
objects
planning
routines

Alphabet pictures,
Commodore 64, Vic 20 	369-370

AND 	 35-36, 285-288
Animation 	 26-32, 350-352
Applications

bar charts 	 257-263
family finance 	 136-143
hobbies' files 	 46-53, 75-79
letter writer 	 124-128
typing tutor 	289-295, 328-332, 353-359

ASCII code 	 314-320
Assembler program

Spectrum 	 380-384
Assembly language

66-67, 309-313, 321-327
Assignment statement 	66-67, 92
ATTR, Spectrum 	 68-69

B
Bar chart program 	 257-263
BASIC programming

arrays 	 152-155, 269-275
ASCII codes 	 314-320
debugging 	 334-338
decision making 	 33-37
how to PLOT, DRAW,
LINE, PAINT 	 84-91
inputting information 	129-135
PEEK and POKE 	 240-247
logical operators 	 284-288
merging programs 	 339-343
programmer's road signs 	60-64
READ and DATA 	 104-109
random numbers 	 2-7
refining your graphics 	184-192
screen displays 	 117-123
strings 	 201-207
structured programming 173-178, 216-219
the FOR ... NEXT loop 	16-21
using colour 	 366-374
using SIN and COS 	250-256, 302-308
variables 	 92-96

BEEP, Spectrum 	 230-231
Binary 	 38, 41, 44, 45, 113-116

negative numbers 	 179-183
Bitwise operators 	 288
Bubble sort program 	216-219

C
Cassette recorders, choice of

	
24

CHAR, Commodore 64
	

368-369
CHAS, Dragon, Tandy
	

26-27
CIRCLE
	

86-91
Circle, drawing a
	

255-256
Clock

drawing a
	

302-306
internal
	

69-73
Codeword program 	 315-318
COLOUR
	

87-90
Colour UDGs, Dragon, Tandy

	
248-249

Control codes
	

319-320
COS
	

250-256, 302-308
CPU
	

236-239
Cursor, definition of
	

7
control codes, Commodores
	

123

D
DATA
Debugging

38, 42
114

33-37

250-251
17

152-153
85-91

191-192

E
Egg-timer program 	 176-177
Ellipse, drawing a
	

256
EOR, Acorn
	

287-288
ENDPROC, Acorn 	 64
Errors 	 334-338, 375-379

F
Family finance program 	136-143
Filing system program 	46-53, 75-79
Flashing colours, Commodore 64 	368
Flow charts 	 173-178
FOR...NEXT loop 	 16-21

G
Games

adventure games
264-268, 296-301, 344-349, 360-365

aliens and missiles
	

144-151
animation
	

26-32
arrays for games
	 155

bombing run program
	

161-167
controlling movement
	

54-59
firing missiles
	

55-58
fruit machine
	

36
guessing
	

3-5
levels of difficulty
	

193-200
maze game
	

68-74, 230-235
minefield
	

97-103
moving characters
	

54-59
random mazes
	

193-200
routines
	

8-15
scoring and timing
	 69-73

sound effects
	

230-235
space station game
	 144-151

visual explosions
	

161-167
GCOL, Acorn
	

371-373
GET
	

55-58, 132-135
GOSUB
	

62-64
GOTO
	

18-21, 60-62
Graphics

characters 	 38-45
creating and moving UDGs 	8-15
drawing on the screen 	132-133
drawing patterns 	 307-308
drawing pictures 	 107-109
explosions for games 	 161-167
fire-breathing dragon 	 80-83
frog UDG 	 10-15
low-resolution 	 26-32
painting by numbers 	 19
refining your graphics 	184-192
spiral pattern 	 307
sunset pattern 	 20
tank UDG 	 10-15
using colour 	 366-374
using GET and PUT,
Dragon, Tandy 	 350-352
using PLOT, DRAW,
CIRCLE, LINE, PAINT 	85-90
using SIN and COS 	250-256, 302-308

IF...THEN 	 3, 33-37
Indirection operators 	 247
INKEYS 	28-29, 54-55, 132-135
INPUT 	 3-5, 117-122, 129-135
INSTR 	 206

J
Joysticks 	 220-224

K
Keypress, detection of
	

54-55
Keywords, spelling of
	

19

L
Languages, computer 	 65

see Assembly language;
BASIC; Machine code

LEFTS 	 202-207
LEN 	 202-207
Letter writing program 	124-128
LINE, Dragon, Tandy 	 88-91
Logical operators 35-37, 284-288, 371-373
Lower case letters,

Dragon, Tandy 	 142

M
Machine code

advantages of
	

66
assembly language
	

309-314, 321-327
binary coded decimal
	

238
binary numbers
	

113-116
drawing dragon with
	

80-83
entering machine code
	

276-283
games graphics
	

38-45
hexadecimal
	

156-160
low level languages
	

65-67
machine architecture
	

236-239
memory maps
	

208-215
monitors 	 276-283
negative numbers 	 179-183
nonary numbers
	

111-112
number bases
	

110-116
ROM and RAM
	

208-215
sideways scrolling 	321-327, 384
speeding up games routines 	8-15

Mapping adventure games 	296-301
Maze programs 	68-75, 193-200
Merging programs 	 339-343
MID5 	 202-207
Minefield game 	 97-99
Mnemonics 	 301

N
Negative binary numbers,

conversion program
	

180-183
Nonary numbers
	

111
NOT
	

286-288
Null strings 	 96
Number bases
	

110-116

0
Opcodes 	 67
Operators 	 35, 284-288
OR
	

35-36, 286-288

P
Paper for printers
	

228
Password program 	 133
PEEK
	

59, 101, 240-247
Peripherals, cassettes
	

22-25
joysticks
	

220-224
printers
	

225-229

Pets survey program 	269-275
PLAY, Dragon, Tandy 	 234-235
PLOT 	 88-89
POKE 	 101, 108-109, 240-247
Positioning text 	 117-123
PRESET 	 374
PRINT 	 26-32, 117-123
Printer, choosing a 	 225-229
PROCedures, Acorn 	 64
PSET, Dragon, Tandy 	13, 90-91, 374
Punctuation, in PRINT statements 119-123

R
RAM
	

25, 44, 46, 208-215
Random numbers 	 2-7
Random mazes 	 193-200
READ
	

40-44, 104-109
Registers 	 236-239
Relational operators
	

284-285
REPEAT...UNTIL, Acorn

	
36

Resolution, high and low
	 84

RESTORE
	

106-107
RIGHTS
	

202-207
RND function 	 2-7
ROM
	

208-215
ROM graphics
	

26-32, 107-109

S
SAVE
	

22-25
Scoring 	 97, 100-101
SCREEN, Dragon, Tandy
	

40, 90
Screen drawing program 	132-133
Screen formatting 	 117-123
Scrolling backwards 	 282-283
Scrolling sideways 	 384
Ship, drawing a, Dragon, Tandy

	191
Shortening programs
	

333
SID chip, Commodore 64
	

231
Simons' BASIC, Commodore 64

	
87-88

SIN 	 250-256, 302-308
Snow scene, Commodore 64 	186-188
Sound effects 	 230-235
Sprite, Commodore 64 	14, 15, 168-172
Stack 	 237-239
STEP 	 17, 21
String functions 	 201-207
String variables 	 4-5, 95-96
STRINGS 	 98, 205
Structured programming

173-178, 216-219
Subroutines 	 62-63

T
TAB
	

117-122
Teletext graphics, BBC
	

28
Terminating numbers 	 34
Timing 	 97, 101-103
Two dimensional arrays
	

269-275
Twos complement
	

179-183
Typing tutor 	289-295, 328-332

U
UDG

animation. Dragon, Tandy
	

350-352
colour UDGs, Dragon, Tandy

	
248-249

definition of
	

8-15, 40-44
grids for
	

8-11
creating your own
	

38-45

V
Variables 	 3-5, 92-96, 104-108
VDU command, Acorn 	28-29, 70, 99
Verifying saved programs 	24-25
VIC chip memory locations

Commodore 64 	 172

Decimal
conversions from binary

	

310-313 	converting fractions into binary
Decision making

	

296-301 	Degrees to radians,

	

360-365 	conversion program

	

264-268 	Delays in programs

	

344-349 	DIMensioning an array
DRAW
Drawing letters, Dragon, Tandy

H

	

104-109 	Hexadecimal 	38, 42, 45, 156-160

	

334-338 	Hobbies file 	 46-53, 75-79

The publishers accept no responsibility for unsolicited material sent for publication in INPUT. All tapes and
written material should be accompanied by a stamped, self-addressed envelope.

If you want to raise communication
with the machine to a new level, what
better than a SPEECH SYNTHESISER?
Read this guide to the hardware for your
computer

‘.../ Getting things in order is fundamental
to everything from scoring games to
compiling an index. Find out how to
write different types of SORTING
PROGRAMS

I Complete your ADVENTURE GAME
by filling in the FINE DETAILS that give
any game its own special character

Explore the many uses of the POWER
functions—for everything from area and
volume to calculating the performance of
a moving object

Plus, for Commodore users, an
ASSEMBLER PROGRAM to translate
assembly language programs into
machine code

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36

